
(a)
Interpretation:
Major elimination product should be given, when given
Concept Introduction:
An E1 reaction is a two-step reaction in which the alkyl halide dissociates forming a carbocation intermediate. Then a base removes a proton from adjacent carbon to a positively charged carbon.
Major product is more stable
An E2 reaction is a concerted, one-step reaction in which the proton is the more stable alkene, unless the reactants are sterically hindered or the leaving group is poor.
(b)
Interpretation:
Major elimination product should be given, when given alkyl halide reacts with strong base and weak base.
Concept Introduction:
An E1 reaction is a two-step reaction in which the alkyl halide dissociates forming a carbocation intermediate. Then a base removes a proton from adjacent carbon to a positively charged carbon.
Major product is more stable alkene.
An E2 reaction is a concerted, one-step reaction in which the proton is the more stable alkene, unless the reactants are sterically hindered or the leaving group is poor.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
Organic Chemistry; Organic Chemistry Study Guide A Format: Kit/package/shrinkwrap
- О The following figures represent distributions of gas molecules between two containers connected by an open tube. In which figure is the entropy of the system maximized? O O Oarrow_forwardGiven the following data, determine the rate constant, k, of the reaction H2(g) + 21C1(g) → 12(g) + 2HCl(g) = Experiment 1 2 3 1.65 × 10 5 torr ¹s -1 6.06 104 torr -1s-1 8.17 105 torr -1s-1 1.34 torr -1s-1 3.48103 torr -¹s−1 [H2] (torr) [ICI] (torr) Rate (torr/s) 250 325 1.34 250 81 0.331 50 325 0.266arrow_forwardPredict the temperature change produced by burning 3.55 g benzoic acid in a bomb calorimeter that has a heat capacity of 20.12 kJ/°C. The enthalpy of combustion of benzoic acid is −26.43 kJ/g.arrow_forward
- Determine the entropy change for the reaction SO 2 (g) + O2(g) → SO3(g) given the following information: Substance S° (J/mol K) . SO2(g) 248.2 O2(g) 205.0 SO3(g) 256.8arrow_forwardHydrochloric acid (HCl) reacts with sodium hydroxide (NaOH) to form sodium chloride (NaCl) and water. If ΔH ° = −56.13 kJ/mol and ΔS ° = 79.11 J/mol ⋅ K, what is the temperature of the reaction if ΔG ° = −80.89 kJ/mol?arrow_forwardFor a particular hypothetical reaction, A+B →2C, the value of AG° is -125 kJ/mol. What is the value of AG for this reaction at 35°C when [A] = 0.10 M, [B] = 0.05 M, and [C] = 2.0 × 10¹ M?arrow_forward
- In an experiment, 74.3 g of metallic copper was heated to 100.0°C and then quickly dropped into 200.0 mL of water in a calorimeter. The heat capacity of the calorimeter with the water was 875 J/°C. The initial temperature of the calorimeter was 27.5°C, and the final temperature after addition of the metal was 29.8°C. What is the value of the molar heat capacity of copper?arrow_forwardThe Haber-Bosch process permits the direct conversion of molecular nitrogen to ammonia, which can be used in large-scale fertilizer production. Given the balanced Haber-Bosch reaction and using the bond energies in the table below, estimate the enthalpy change associated with the reaction. N2(g) + 3H2(g) → 2NH3(g) Bond N=N N = N Energy (kJ/mol) 941 418 N-N H-H N-H 163 435 388arrow_forwardBenzoic acid is used to determine the heat capacity of bomb calorimeters because it can be obtained in pure form and its energy of combustion is known very accurately (−26.43 kJ/g). Determine the heat capacity of a calorimeter that had a temperature increase of 9.199°C when 3.500 g of benzoic acid was used.arrow_forward
- Given the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 2N2H4(g) + 2NO2(g) → 3N2(g) + 4H2O(g) AHrxn ? kJ Substance AH in kJ/mol N2H4(g) +95.4 NO2(g) +33.1 H2O(g) -241.8arrow_forwardIf 7.3 kJ of energy are required to change the temperature of water from 5.0 to 70.0, what was the volume of water? (cs = 4.184 J/(g ⋅ ), d = 1.00 g/mL)arrow_forwardBALANCE CHEMICAL REACTIONarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning

