Concept explainers
Consider dimensionless velocity distribution in Couette flow (which is also called generalized Couette flow) with an applied pressure gradient which is obtained in the following from in Example 9-16 as
where
FIGURE P9-102
(a)
The velocity distribution is a superposition of Couette flow with a linear velocity distribution and Poiseuille flow with a parabolic velocity distribution.
Explanation of Solution
Given information:
The following figure shows that two infinite plates.
Figure-(1)
At the point of wall and fluid, the velocity of the fluid is equal to zero.
Write the expression for the pressure gradient.
Here, the arbitrary locations along the
Write the expression for
Here, the viscosity is
Write the expression for
Here, the density of the fluid is
Integrate Equation (II) with respect to
Here, the constant is
Integrate Equation (IV) with respect to
Here, the constant is
Integrate Equation (III) with respect to
Here, the constant is
The following figure represents planar Poiseuile flow.
Figure (2)
Write the expression for dimensionless form of velocity field.
Here, the non- dimensional velocity along the arbitrary location along the
The Equation (VII) indicates that the pressure gradient is positive. If the both walls are stationary and pressure gradient is also there, then the flow should be planar Poiseuile flow.
Write the expression for non- dimensional velocity.
Write the expression for non- dimensional pressure.
Write the expression for non -dimensional distance
Calculation:
Substitute
Substitute
Substitute
The Equations (VII) indicates super position of the linear velocity profile
Substitute
(b)
The plot the
Answer to Problem 102P
The following Figure (4) represents the
Explanation of Solution
At the point of wall and fluid, the velocity of the fluid is equal to zero.
Write the expression for the pressure gradient.
Here, the arbitrary locations along the
The following figure represents planar Poiseuile flow.
Figure (2)
Write the expression for dimensionless form of velocity field.
Here, the non dimensional velocities is
The Equation (VII) indicates that the pressure gradient is positive. If the both walls are stationary and pressure gradient is also there, then the flow should be planar Poiseuile flow.
Write the expression for non -dimensional velocity.
Write the expression for non -dimensional pressure.
The following figure represents the Couette flow between two parallel plates.
Figure-(3)
The pressure gradient is less than two, then pressure is decreasing in
Write the expression for non dimensional distance
Substitute
The following table represents the pressure gradient and x or y non- dimensional distance.
| | |
| | |
| | |
| | |
The following figure represents between
Figure (4)
The Figure (4) indicates that the pressure gradient is positive. If the both walls are stationary and pressure gradient is also there, then the flow should be planar Poiseuile flow.
Conclusion:
The following Figure (4) represents the
(c)
The position and magnitude of maximum dimensionless velocity.
Answer to Problem 102P
The expression for the pressure of fluid 1 is
The expression for the pressure of fluid
Explanation of Solution
Assume, at the point of wall and fluid, the velocity of the fluid is equal to zero.
Write the expression for velocity of the fluid 1,
Here, the velocity of fluid 1 is
Assume, the velocity of the fluid 2 at the free surface of the wall is equal to the velocity of the moving plates.
Write the expressions for the velocity of fluid 2.
Here, the velocity of fluid 2 is
Write the expression for velocity at interface.
Write the expression for rate of shear stress.
Here, the kinematic coefficient of fluid is
Write the expression for the shear stress acting on fluid
Here, the kinematic coefficient of fluid 1 is
Write the expression for the shear stress acting on fluid 2.
Here, the kinematic coefficient of fluid 2 is
Write the expression for the rate of shear stress at interface.
Write the expression for pressure at the bottom of the flow,
Here, the pressure is
Write the expression for the pressure at the interface of fluid 1.
Here, the pressure at the fluid 1 is
Write the expression for the pressure at the interface of fluid 2.
Here, the pressure at the fluid 1 is
At the interface of the fluid the pressure cannot have discontinuity and the surface is ignored.
Write the expression for the pressure at interface of fluid.
Here, the velocity of flow for fluid
Write the expression for
Here, the density of the fluid 1 is
Write the expression for
Here, the density of the fluid 2 is
Calculation:
Integrate Equation (XXVII) with respect to
Here, the constant is
Substitute
Substitute
Integrate Equation (XXVIII) with respect to
Here, the constant is
Substitute
Substitute
Substitute
Conclusion:
The expression for the pressure of fluid 1 is
The expression for the pressure of fluid 2 is
(d)
The position and magnitude of the maximum dimensionless velocity.
Answer to Problem 102P
The position of the maximum dimensionless velocity is
The magnitude of the maximum dimensionless velocity is
Explanation of Solution
Given information:
Write the expression for the position of the velocity.
Here, the viscosity of the fluid is
The following figure represents positions of the velocities.
Figure-(5)
Write the expression for the radial velocity
Here, the maximum velocity is
The following figure represents the magnitude of the velocity.
Figure-(6)
Write the expression for magnitude.
Here the magnitude is
Substitute
Conclusion:
The position of the maximum dimensionless velocity is
The magnitude of the maximum dimensionless velocity is
Want to see more full solutions like this?
Chapter 9 Solutions
Fluid Mechanics: Fundamentals and Applications
- Consider a two-dimensional flow in the upper half plane of (x, y) bounded below by a Fid plate coinciding with the x axis. At t= 0 the plate suddenly moves in the tangential direction at constant velocity 'U'. The velocity distribution of the flow is y erf(- 2vt obtained as u=U|1- Using the properties of the error function i) verify whether u is satisfying the conditions: (a) u=U at y=0_(for t20) (b) u=0 as y→0 (for t>0) (for V y) (c) u=0 at t=0 du ii) determine the stress at wall using the condition T (0,1)=µ dy ly-0 Once you upload files from your second device, click on C Sync to check your submission Cameraarrow_forwardI want to answer all the questions by handwriting.arrow_forwardQuestion 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in the figure (dP/dx is constant and negative). The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by 1 dP u = -(y² - hy); v = 0 2μ αχ h where μ is the fluid's viscosity. Is this flow rotational or irrotational? u(y) a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise? b. calculate the linear strain rates in the x- and y-directions, and c. calculate the shear strain rate Exy. d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,arrow_forward
- pls answer question with steparrow_forwardPlease helparrow_forwardIRCIC Next Generat... A TASHRM The velocity field for a fluid flow is given by following expression: V (0.2x² +2y+2.5)i +(0.5x+2y -6)j+(0.15x +3y + z)k The strain tensor at (2,1,-1) will be: 0.8 1.25 0.30 a)-1.25 -4 0.30 -1 0.8 1.25 0.70) b) 1.25 4 2 0.30 -2 0.8 1.25 0.30 c) | 1.25 4 -2 0.30 -2 0.8 1.25 0.30 O Tvne aere to searcharrow_forward
- D--- p, FIGURE P7-62 7–63 Consider laminar flow through a long section of pipe, as in Fig. P7–62 0. For laminar flow it turns out that wall roughness is not a relevant parameter unless e is very large. The volume flow rate b through the pipe is a function of pipe diameter D, fluid viscosity µ, and axial pressure gradient dPldx. If pipe diameter is doubled, all else being equal, by what factor will volume flow rate increase? Use dimensional analysis.arrow_forwardThe volumetric strain rate (s) of a steady two-dimensional velocity field V = (2.5 -1.6x)i + (0.7 + 8y)j is -1.6 3.2 0 DO secs -0.8arrow_forwardplease answer quicklyarrow_forward
- In deriving the vorticity equation, we have used the identity divergence x (divergence P) = 0 Show that this identity is valid for any scalar lamda by checking it in Cartesian and cylindrical coordinates.arrow_forwardConsider dimensionless velocity distribution in Couette flow (which is also called generalized Couette flow) with an applied pressure gradient which is obtained in the following form as attached, where u, V, ∂P/∂x, and h represent fluid velocity, upper plate velocity, pressure gradient, and distance between parallel plates, respectively. Also, u* , y* , and P* represent dimensionless velocity, dimensionless distance between the plates, and dimensionless pressure gradient, respectively. (a) Explain why the velocity distribution is a superposition of Couette flow with a linear velocity distribution and Poiseuille flow with a parabolic velocity distribution. (b) Show that if P*>2, backflow begins at the lower wall and it never occurs at the upper wall. Plot u* versus y* for this situation. (c) Find the position and magnitude of maximum dimensionless velocity.arrow_forwardplease answer quicklyarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY