Concept explainers
Consider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely lons round pipe annulus of inner radius
FIGURE P9-98
the x-axis, and
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fluid Mechanics: Fundamentals and Applications
- Consider a two-dimensional (planar), steady and incompressible flow in the en- trance region of a duct leading to the fully developed region, as shown. Velocity profile at the entrance is U, which is uniform. At length L the flow becomes fully developed. Fluid viscosity is μ and its density of p. Pressure is uniform in the vertical (y) direction. Consider unity width normal to the page. Vo h L เง I x u Find the fully-developed velocity profile u(y) at x ≥ L. Using continuity equa- tion, express the velocity profile in terms of Uo, y and h only. Find the pressure gradient dp/dr and wall shear stress in the fully developed region (x > L) in terms of μ, U₁ and h. Calculate the total friction force acting on the walls in the entrance region (0 < xarrow_forwardA frictionless, incompressible steady flow field is given byV = 2xyi - y2jin arbitrary units. Let the density be ρ 0 = constant andneglect gravity. Find an expression for the pressure gradientin the x direction.arrow_forwardA potential steady and incompressible air flow on x-y plane has velocity in y-direction v= - 6 xy . Determine the velocity in x-direction u=? and Stream Function SF=? ( x2 : square of x ; x3: third power of x ; y2: square of y , y3: third power of y)ANSWER: u= 3 x2 - 3 y2 SF= 3 x2 y - y3arrow_forwardTwo immiscible liquids of equal thickness h are beingsheared between a fixed and a moving plate, as in Fig. .Gravity is neglected, and there is no variation with x . Findan expression for ( a ) the velocity at the interface and ( b ) theshear stress in each fluid. Assume steady laminar flow.arrow_forwardPlease solve this..arrow_forwardHello sir Muttalibi is a step solution in detailing mathematics the same as an existing step solution EXAMPLE 6-1 Momentum-Flux Correction Factor for Laminar Pipe Flow CV Vavg Consider laminar flow through a very long straight section of round pipe. It is shown in Chap. 8 that the velocity profile through a cross-sectional area of the pipe is parabolic (Fig. 6-15), with the axial velocity component given by r4 V R V = 2V 1 avg R2 (1) where R is the radius of the inner wall of the pipe and Vavg is the average velocity. Calculate the momentum-flux correction factor through a cross sec- tion of the pipe for the case in which the pipe flow represents an outlet of the control volume, as sketched in Fig. 6-15. Assumptions 1 The flow is incompressible and steady. 2 The control volume slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15. Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte- grate, noting that dA, = 2ar dr, FIGURE 6–15 %3D Velocity…arrow_forwardPlease help me in answering the following practice question. Thank you for your help. A Newtonian fluid is flowing in an infinitely long round pipe of diameter M or radius N = M/2 and inclined at angle α with the horizontal line. Consider the flow is steady (dρ/dt=0), in-compressible, and laminar. There is no applied pressure gradient (dP/dz= 0) applied along the pipe length (z-direction). The fluid flows down the pipe due to gravity alone (gravity acts vertically downward). Adopt the coordinate system with z axis along the centre line of the pipe along the pipe length.Derive an expression for the z-component of velocity u as a function of radius N and the other parameters of the problem. The density and viscosity of the fluid are ρ and u, respectively.Please list all necessary assumptions.arrow_forwardA capillary tube has an 8mm inside diameter through which liquid fluorine refrigerant R-11 flows at a rate of 0.03 cm3/s. The tube isto be used as a throttling device in an air conditioning unit. A model of this flow is constructed by using a pipe of 3cm inside diameter and water as the fluid medium. (Density of R-11 = 1.494 g/cm3 and its viscosity is 4.2 x10-4 Pa.s; Density of water is 1g/cm3 and its viscosity 8.9 x10-4 Pa.s)a) What is the required velocity in the model for dynamic similarity? Hint: For flow through a tube the Ne number can be expressed in terms of the Reynolds numberb) When dynamic similarity is achieved the pressure drop is measured at 50 Pa. What is the corresponding pressure drop in the capillary tube?Hint: In this case the Euler number defines dynamic similarity with reference to the static pressure droparrow_forwardVelocity components in the flow of an ideal fluid in a horizontal plane; Given as u = 16 y - 12 x , v = 12 y - 9 x a) Is the current continuous?(YES OR NO) b) Can the potential function be defined?(YES OR NO) c) Find the unit width flow passing between the origin and the point A(2,4). (y(0,0)=0) d) Calculate the pressure difference between the origin and the point B(3;3).arrow_forwardConsider a steady, incompressible, y=+h ↑y hydrodynamically fully-developed flow between two infinite flat plates as shown. The flow can be described by the following equation: y=-h 2U K -y² +C¸y+C, 2µ where u is the dynamic viscosity, u is the axial velocity (i.e., the velocity in x-direction), and K, Cı, and C2 are constants. (a) Obtain the velocity profile u(y) in terms of h, U, K, µ̟ and y. (b) For what value of K is the shear stress zero at y=h/2. Consider h=0.01 mm, U=0.1 mm/s, and u=0.001 Pa.sarrow_forwardConsider a two-dimensional flow which varies in time and is defined by the velocity field, u = 1 and v = 2yt. Is the flow field incompressible at all 9mes?arrow_forwardConsider steady, incompressible, parallel, laminar flow of a viscous fluid falling between two infinite vertical walls. The distance between the walls is h, and gravity acts in the negative z-direction (downward in the figure). There is no applied (forced) pressure driving the flow—the fluid falls by gravity alone. The pressure is constant everywhere in the flow field. For the fluid falling between two parallel vertical walls, generate an expression for the volume flow rate per unit width (V·/L) as a function of ?, ? , h, and g. Compare your result to that of the same fluid falling along one vertical wall with a free surface replacing the second wall, all else being equal. Discuss the differences and provide a physical explanation.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY