Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Solution Summary: The author explains the standard change in enthalpy for the melting of ice and determine the mass of dry icy required to cool 15 L of water from 85° C to 25°C.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation:
CO
2
(
s
)
→
CO
2
(
g
)
When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The
Δ
H
f
o
for CO2 (s) is -427.4 kJ.mol)
When carbon dioxide sublimes, the gaseous CO2is cold enough to cause water vapor in the air to condense, forming fog.
Using the equation below, what is the rate of this reaction if the rate of disappearance of H2 is 0.44 M/sec?
H2 + Br2 → 2HBr
2Fe3+(aq) + Sn2+(aq) □ 2Fe²+(aq) + Sn 4+ (aq)
If the change in Sn²+ concentration is 0.0010M in 38.5 seconds, what is the rate of disappearance of
Sn²+?
For a neutral hydrogen atom with an electron in the n = 4 state, how many different energies
are possible when a photon is emitted?
4
3
2
1
There are infinite possibilities
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY