Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Solution Summary: The author explains the standard change in enthalpy for the melting of ice and determine the mass of dry icy required to cool 15 L of water from 85° C to 25°C.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation:
CO
2
(
s
)
→
CO
2
(
g
)
When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The
Δ
H
f
o
for CO2 (s) is -427.4 kJ.mol)
When carbon dioxide sublimes, the gaseous CO2is cold enough to cause water vapor in the air to condense, forming fog.
Are the products of the given reaction correct? Why or why not?
The question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY