Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Solution Summary: The author explains the standard change in enthalpy for the melting of ice and determine the mass of dry icy required to cool 15 L of water from 85° C to 25°C.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation:
CO
2
(
s
)
→
CO
2
(
g
)
When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The
Δ
H
f
o
for CO2 (s) is -427.4 kJ.mol)
When carbon dioxide sublimes, the gaseous CO2is cold enough to cause water vapor in the air to condense, forming fog.
2H2S(g)+3O2(g)→2SO2(g)+2H2O(g)
A 1.2mol sample of H2S(g) is combined with excess O2(g), and the reaction goes to completion.
Question
Which of the following predicts the theoretical yield of SO2(g) from the reaction?
Responses
1.2 g
Answer A: 1.2 grams
A
41 g
Answer B: 41 grams
B
77 g
Answer C: 77 grams
C
154 g
Answer D: 154 grams
D
Part VII. Below are the 'HNMR, 13 C-NMR, COSY 2D- NMR, and HSQC 2D-NMR (similar with HETCOR but axes are reversed) spectra of an
organic compound with molecular formula C6H1003 - Assign chemical shift values to the H and c atoms of the
compound. Find the structure. Show complete solutions.
Predicted 1H NMR Spectrum
4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
f1 (ppm)
Predicted 13C NMR Spectrum
100
f1 (ppm)
30
220 210 200 190 180
170
160 150 140 130 120
110
90
80
70
-26
60
50
40
46
30
20
115
10
1.0 0.9 0.8
0
-10
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY