Organic Chemistry
9th Edition
ISBN: 9781305080485
Author: John E. McMurry
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.SE, Problem 38MP
Reaction of cyclohexene with mercury(II) acetate in CH3OH rather than H2O, followed by treatment with NaBH4, yields cyclohexyl methyl ether rather than cyclohexanol. Suggest a mechanism.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Treating cyclohexene with HBr in the presence of acetic acid gives bromocyclohexane
(85%) and cyclohexyl acetate (15%).
Br
OCCH
CH,COH
+ HBr
Bromocyclohexane Cyclohexyl acetate
(15%)
Cyclohexene
(85%)
Propose a mechanism for the formation of the latter product.
An alkene is treated with OsO4 followed by H2O2. When the resulting diol is treated with HIO4, the only product obtained is an unsubstituted cyclic ketone with molecular formula C6H10O. What is the structure of the alkene?
When cyclohexene is treated with bromine in saturated aqueous sodium chloride, a mixture of trans-2-bromocyclohexanol and trans-1-bromo-2-chlorocyclohexane results.Propose a mechanism to account for these two products.
Chapter 8 Solutions
Organic Chemistry
Ch. 8.1 - Prob. 1PCh. 8.1 - How many alkene products, including E,Z isomers,...Ch. 8.2 - Prob. 3PCh. 8.2 - Addition of HCl to 1, 2-dimethylcyclohexene yields...Ch. 8.3 - Prob. 5PCh. 8.3 - Prob. 6PCh. 8.4 - Prob. 7PCh. 8.4 - From what alkenes might the following alcohols...Ch. 8.5 - Prob. 9PCh. 8.5 - What alkenes might be used to prepare the...
Ch. 8.5 - Tho following cycloalkene gives a mixture of two...Ch. 8.6 - Prob. 12PCh. 8.7 - Prob. 13PCh. 8.7 - Starting with an alkene, how would you prepare...Ch. 8.8 - Prob. 15PCh. 8.8 - Prob. 16PCh. 8.9 - What products would you expect from the following...Ch. 8.10 - Prob. 18PCh. 8.10 - Prob. 19PCh. 8.13 - Prob. 20PCh. 8.13 - What products are formed from hydration of...Ch. 8.SE - Name the following alkenes, and predict the...Ch. 8.SE - Prob. 23VCCh. 8.SE - Prob. 24VCCh. 8.SE - Prob. 25VCCh. 8.SE - Prob. 26MPCh. 8.SE - Prob. 27MPCh. 8.SE - Draw the structures of the organoboranes formed...Ch. 8.SE - Prob. 29MPCh. 8.SE - Provide the mechanism and products for the...Ch. 8.SE - Propose a curved-arrow mechanism to show how ozone...Ch. 8.SE - Prob. 32MPCh. 8.SE - Prob. 33MPCh. 8.SE - Prob. 34MPCh. 8.SE - 10-Bromo- α -chamigrene, a compound isolated from...Ch. 8.SE - Isolated from marine algae, prelaureatin is...Ch. 8.SE - Dichlorocarbene can be generated by heating sodium...Ch. 8.SE - Reaction of cyclohexene with mercury(II) acetate...Ch. 8.SE - Use your general knowledge of alkene chemistry to...Ch. 8.SE - Prob. 40MPCh. 8.SE - Hydroboration of 2-methyl-2-pentene at 25°C,...Ch. 8.SE - Prob. 42APCh. 8.SE - Suggest structures for alkenes that give the...Ch. 8.SE - Prob. 44APCh. 8.SE - Prob. 45APCh. 8.SE - Prob. 46APCh. 8.SE - Prob. 47APCh. 8.SE - Predict the products of the following reactions....Ch. 8.SE - Prob. 49APCh. 8.SE - How would you carry out the following...Ch. 8.SE - Draw the structure of an alkene that yields only...Ch. 8.SE - Show the structures of alkenes that give the...Ch. 8.SE - Prob. 53APCh. 8.SE - Which of the following alcohols could not be made...Ch. 8.SE - Prob. 55APCh. 8.SE - Prob. 56APCh. 8.SE - Prob. 57APCh. 8.SE - Compound A has the formula C10HI6. On catalytic...Ch. 8.SE - Prob. 59APCh. 8.SE - Prob. 60APCh. 8.SE - Prob. 61APCh. 8.SE - Draw the structure of a hydrocarbon that absorbs 2...Ch. 8.SE - Prob. 63APCh. 8.SE - The sex attractant of the common housefly is a...Ch. 8.SE - Prob. 65APCh. 8.SE - Prob. 66APCh. 8.SE - α-Terpinene, C10H16, is a pleasant-smelling...Ch. 8.SE - Prob. 68APCh. 8.SE - Prob. 69APCh. 8.SE - Prob. 70APCh. 8.SE - Prob. 71APCh. 8.SE - Prob. 72AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Aldehydes and ketones react with thiols to yield thioacetals just as they react with alcohols to yield acetals. Predict the product of the following reaction, and propose a mechanism:arrow_forwardEthylene oxide is the starting material for the synthesis of 1,4-dioxane. Propose a mechanism for each step in this synthesis.arrow_forwardReaction of iodoethane with CN- yields a small amount of isonitrile, CH3CH2N≡C, along with the nitrile CH3CH2N≡N, as the major product. Write electron-dot structures for both products, assign formal charges as necessary, and propose mechanisms to account for their formation.arrow_forward
- Treatment of 3-chloro-2-cyclohexenone with sodium ethoxide in methanol gives 3-ethoxy-2-cyclohexene. Propose a mechanism for this reaction that accounts for the formation of the product.arrow_forwardTreatment of trans-2-chlorocyclohexanol with NaOH yields 1, 2-epoxy-cyclohexane, but reaction of the cis isomer under the same conditions yields cyclohexanone. Propose mechanisms for both reactions, and explain why the different results are obtained.arrow_forwardExplain with mechanismarrow_forward
- Propose a mechanism for the acid-catalyzed hydration of methylidenecyclohexane to give 1-methylcyclohexanol. Which step in your mechanism is rate-determining?arrow_forwardTreatment of 3-methylcyclohexene with HCl yields two products, 1-chloro-3methylcyclohexane and 1-chloro-1-methylcyclohexane. Draw a mechanism to explain this result.arrow_forwardTreatment of a hydrocarbon A (molecular formula C9H18) with Br2 in the presence of light forms alkyl halides B and C, both having molecular formula C9H17Br. Reaction of either B or C with KOC(CH3)3 forms compound D (C9H16) as the major product. Ozonolysis of D forms cyclohexanone and acetone. Identify the structures of A–D.arrow_forward
- Alkylation of benzene with 1-chlorobutane in the presence of AlCl3 gave not only the expected butylbenzene product but also, as a major product, (1-methylpropyl)benzene. Write an equation for the reaction Propose a mechanism to account for the formation of butylbenzene Propose a mechanism to account for the formation of (1-methylpropyl)benzenearrow_forward(b) Treating cyclohexene with HBr in the presence of acetic acid gives bromocyclohexane (85%) and cyclohexyl acetate (15%). Propose a mechanism for the formation of the latter product using curly arrows. Br оссH, CH,COH + HBr 85% 15%arrow_forwardPara-substituted product was produced when phenol reacts with cyclohexanecarbonyl bromide in the presence of AIB13. -Br Cyclohexanecarbonyl bromide (i) Outline the mechanism for this reaction. (ii) Draw the alternative substituted product formed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Coenzymes and cofactors; Author: CH15 SWAYAM Prabha IIT Madras;https://www.youtube.com/watch?v=bubY2Nm7hVM;License: Standard YouTube License, CC-BY
Aromaticity and Huckel's Rule; Author: Professor Dave Explains;https://www.youtube.com/watch?v=7-BguH4_WBQ;License: Standard Youtube License