Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 80P
A well-insulated shell-and-tube heat exchanger is used to heat water (cp = 4.18 kJ/kg·°C) in the tubes from 20 to 70°C at a rate of 4.5 kg/s. Heat is supplied by hot oil (cp = 2.30 kJ/kg·°C) that enters the shell side at 170°C at a rate of 10 kg/s. Disregarding any heat loss from the heat exchanger, determine (a) the exit temperature of oil and (b) the rate of exergy destruction in the heat exchanger. Take T0 = 25°C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A well-insulated shell-and-tube heat exchanger is used to heat water (cp = 4.18 kJ/kg·°C) in the tubes from 20 to 70°C at a rate of 4.5 kg/s. Heat is supplied by hot oil (cp = 2.30 kJ/ kg·°C) that enters the shell side at 170°C at a rate of 10 kg/s. Disregarding any heat loss from the heat exchanger, determine the exit temperature of oil.
A well-insulated shell-and-tube heat exchanger is used to heat water (cp = 4.18 kJ/kg·°C) in the tubes from 20 to 70°C at a rate of 4.5 kg/s. Heat is supplied by hot oil (cp = 2.30 kJ/ kg·°C) that enters the shell side at 170°C at a rate of 10 kg/s. Disregarding any heat loss from the heat exchanger, determine the rate of exergy destruction in the heat exchanger. Take T0 = 25°C.
A well-insulated shell-and-tube heat exchanger is used to heat water (cp = 4.18 kJ/kg·°C) in the tubes from 20 to 70°C at a rate of 4.5 kg/s. Heat is supplied by hot oil (cp = 2.30 kJ/kg·°C) that enters the shell side at 170°C at a rate of 10 kg/s. Determine the rate of heat transfer in the heat exchanger and the exit temperature of oil.
Chapter 8 Solutions
Thermodynamics: An Engineering Approach
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - Under what conditions does the reversible work...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - How does reversible work differ from useful work?Ch. 8.8 - Is a process during which no entropy is generated...Ch. 8.8 - Consider an environment of zero absolute pressure...Ch. 8.8 - It is well known that the actual work between the...Ch. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...
Ch. 8.8 - Prob. 11PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 13PCh. 8.8 - Saturated steam is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - A geothermal power plant uses geothermal liquid...Ch. 8.8 - A house that is losing heat at a rate of 35,000...Ch. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 24PCh. 8.8 - Prob. 25PCh. 8.8 - Prob. 26PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - Prob. 37PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - Prob. 41PCh. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - A 50-kg iron block and a 20-kg copper block, both...Ch. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - Prob. 47PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 49PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 54PCh. 8.8 - Prob. 55PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 57PCh. 8.8 - Prob. 58PCh. 8.8 - The adiabatic compressor of a refrigeration system...Ch. 8.8 - Refrigerant-134a at 140 kPa and 10C is compressed...Ch. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Steam enters a turbine at 9 MPa, 600C, and 60 m/s...Ch. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 66PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - A 0.6-m3 rigid tank is filled with saturated...Ch. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Liquid water at 200 kPa and 15C is heated in a...Ch. 8.8 - Prob. 78PCh. 8.8 - Prob. 79PCh. 8.8 - A well-insulated shell-and-tube heat exchanger is...Ch. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - Prob. 82PCh. 8.8 - Prob. 83PCh. 8.8 - Prob. 84PCh. 8.8 - Prob. 85RPCh. 8.8 - Prob. 86RPCh. 8.8 - An aluminum pan has a flat bottom whose diameter...Ch. 8.8 - Prob. 88RPCh. 8.8 - Prob. 89RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 92RPCh. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Prob. 97RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 99RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - An adiabatic turbine operates with air entering at...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Prob. 103RPCh. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 113RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 116RPCh. 8.8 - A rigid 50-L nitrogen cylinder is equipped with a...Ch. 8.8 - Prob. 118RPCh. 8.8 - Prob. 119RPCh. 8.8 - Prob. 120RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 122RPCh. 8.8 - Prob. 123RPCh. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 129RPCh. 8.8 - Prob. 130RPCh. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 133RPCh. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - Prob. 135FEPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - Prob. 138FEPCh. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 142FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A thin-walled, double-tube, counterflow heat exchanger is used to cool oil (Cp = 2.20 kJ/kg °C) from 150 to 40°C at a rate of 2 kg/s by means of water (Cp = 4.18 kJ/ kg °C), which enters at 22°C at a rate of 1.5 kg/s. Determine the rate of heat transfer in the exchanger and the leaving temperature of the water.arrow_forwardIn a power plant steam, steam is continuously extracted from the turbine and in a heat exchanger there is a condensation of the extracted steam. The energy released during condensation of steam is used to operate a heat engine. A heat engine receives thermal energy at a rate of 1250 kJ/min from condensing steam and rejects waste heat to a lake at 20°C at a rate of 800 kJ/min. Determine the lowest possible condensing steam temperature.arrow_forwardA heat exchanger is used to cool oil (with cp = 2.2 kJ/kg.°C) from 170 to 50°C by water (with cp = 4.18 kJ/kg.°C) that enters the heat exchanger at a rate of 2 kg/s and inlet temperature of 10°C. If the flow rate of the oil is 1.5 kg/s, determine the exit temperature of water and the heat transfer rate from the oil.arrow_forward
- A shell-and-tube heat exchanger with 2-shell passes and 12-tube passes is used to heat water (Cp = 4180 J/kg · °C) in the tubes from 20°C to 70°C at a rate of 5 kg/s. Heat is supplied by hot oil (Cp = 2300 J/kg · °C) that enters the shell side at 170°C at a rate of 15 kg/s. For a tube-side overall heat transfer coefficient of 600 W/m2 · °arrow_forwardCold water enters a counter-flow heat exchanger at 35°C at a rate of 0.0233 kg/s, where it is heated by a hot water stream that enters the heat exchanger at 200°C at a rate of 0.0117 kg/s. Assume the specific heat of cold water to remain constant at C, = 4.186 kJ/kg · °C and the specific heat of hot water to remain constant at C, = 4.302 kJ/kg · °C. Consider the overall heat transfer coefficient to be 180 W/m2.K. determine (a) the maximum heat transfer rate and (b) the actual outlet temperatures of the hot and cold water streams using the effectiveness-NTU method. Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 The thickness of the tube is negligible since it is thin-walled. 4 Changes in the kinetic 4 Changes in the kinetic and potential energies of fluid streams are negligible. 5 The overall heat…arrow_forwardSteam 90°C 10. A shell-and-tube process heater is to be selected to heat water (Cp = 4190 J/kg-°C) from 20°C to 90°C by steam flowing on the shell side. The heat transfer load of the heater is 600 kW. If the inner diameter of the tubes is 1 cm and the velocity of water is not to exceed 3 m/s, determine how many tubes need to be used in the heat exchanger. 20°C Waterarrow_forward
- A well-insulated, thin-walled, counterflow heat exchanger is to be used to cool oil (cp = 2.20 kJ/kg.oC) from 150 to 40oC at a rate of 2 kg/s with water (cp = 4.18 kJ/kg.oC) that enters at 22oC at a rate of 1.5 kg/s. The diameter of the tube is 2.5 cm, and its length is 6 m. Determine (a) the rate of heat transfer and (b) the rate of exergy destruction in the heat exchanger.arrow_forwardProblem 1 A counterflow double-pipe heat exchanger is to be used to heat 0.7 kg/s of water from 35 to 90 °C with an oil flow of 0.95 kg/s. The oil has a specific heat of 2.1 kJ / kg · °C and enters the heat exchanger at a temperature of 175 °C. The overall heat-transfer coefficient is 425 W/m². C. Calculate the area of the heat exchanger and the effectiveness.arrow_forwardA diesel engine produces hot exhaust gases which are used to produce steam in an evaporator. The heat transfer surface area of the heat exchanger based on water side is 0.5 m² and overall heat transfer coefficient is 1780 W/m² °C. Exhaust gases (Cp = 1051 J/kg • °C) enter the heat exchanger at 550°C at a rate of 0.25 kg/s while water enters as saturated liquid and evaporates at 200°C. Determine the rate of evaporation of water in kg/hr. A 175 B 165 с 170 D 160arrow_forward
- A heat exchanger is to heat water (cp = 4.18 kJ/kg·oC) from 25oC to 60oC at a rate of 0.2 kg/s. The heating is to be accomplished by geothermal water (cp = 4.31 kJ/kg·oC) available at 159oC at a mass flow rate of 0.3 kg/s. Find the exit temperature of geothermal water.arrow_forwardA well-insulated heat exchanger is to heat water (cp = 4.18 kJ/kg·°C) from 25°C to 60°C at a rate of 0.4 kg/s. The heating is to be accomplished by geothermal water (cp = 4.31 kJ/kg·°C) available at 140°C at a mass flow rate of 0.3 kg/s. The inner tube is thin-walled and has a diameter of 0.6 cm. Determine the rate of exergy destruction in the heat exchanger.arrow_forwardA well-insulated heat exchanger is to heat water (cp = 4.18 kJ/kg·°C) from 25°C to 60°C at a rate of 0.4 kg/s. The heating is to be accomplished by geothermal water (cp = 4.31 kJ/kg·°C) available at 140°C at a mass flow rate of 0.3 kg/s. The inner tube is thin-walled and has a diameter of 0.6 cm. Determine the rate of heat transfer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License