Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.8, Problem 71P
Hot combustion gases enter the nozzle of a turbojet engine at 230 kPa, 627°C, and 60 m/s and exit at 70 kPa and 450°C. Assuming the nozzle to be adiabatic and the surroundings to be at 20°C, determine (a) the exit velocity and (b) the decrease in the exergy of the gases. Take k = 1.3 and cp = 1.15 kJ/kg·°C for the combustion gases.
FIGURE P8–71
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hot combustion gases enter the nozzle of a turbojet engine at 250 kPa, 650°C, and 70 m/s and exit at
80 kPa and 420°C. The mass flow rate is 1.2 kg/s. Assume the heat losses to the surroundings is 90kW
and the surroundings is at 27°C. Determine (a) the exit velocity and (b) the decrease in the exergy of
the gases. Take k = 1.3 and c, = 1.15 kJkg-°C for the combustion gases.
Qtoss = 90kW
250 kPa
Combustion
gases
80 kPa
650°C
420°C
70 m/s
m = 1.2 kg/s
m = 1.2 kg/s
This question related to thermodynamics
Hot combustion gases enter the nozzle of a turbojet engine at 350 kPa, 1007 0C, and 95 m/s, and they exit at a pressure of 100 kPa. Assuming an isentropic efficiency of 95 percent and treating the combustion gases as air determine
a- The exit velocity
b- The exit temperature
Chapter 8 Solutions
Thermodynamics: An Engineering Approach
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - Under what conditions does the reversible work...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - How does reversible work differ from useful work?Ch. 8.8 - Is a process during which no entropy is generated...Ch. 8.8 - Consider an environment of zero absolute pressure...Ch. 8.8 - It is well known that the actual work between the...Ch. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...
Ch. 8.8 - Prob. 11PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 13PCh. 8.8 - Saturated steam is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - A geothermal power plant uses geothermal liquid...Ch. 8.8 - A house that is losing heat at a rate of 35,000...Ch. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 24PCh. 8.8 - Prob. 25PCh. 8.8 - Prob. 26PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - Prob. 37PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - Prob. 41PCh. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - A 50-kg iron block and a 20-kg copper block, both...Ch. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - Prob. 47PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 49PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 54PCh. 8.8 - Prob. 55PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 57PCh. 8.8 - Prob. 58PCh. 8.8 - The adiabatic compressor of a refrigeration system...Ch. 8.8 - Refrigerant-134a at 140 kPa and 10C is compressed...Ch. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Steam enters a turbine at 9 MPa, 600C, and 60 m/s...Ch. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 66PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - A 0.6-m3 rigid tank is filled with saturated...Ch. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Liquid water at 200 kPa and 15C is heated in a...Ch. 8.8 - Prob. 78PCh. 8.8 - Prob. 79PCh. 8.8 - A well-insulated shell-and-tube heat exchanger is...Ch. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - Prob. 82PCh. 8.8 - Prob. 83PCh. 8.8 - Prob. 84PCh. 8.8 - Prob. 85RPCh. 8.8 - Prob. 86RPCh. 8.8 - An aluminum pan has a flat bottom whose diameter...Ch. 8.8 - Prob. 88RPCh. 8.8 - Prob. 89RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 92RPCh. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Prob. 97RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 99RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - An adiabatic turbine operates with air entering at...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Prob. 103RPCh. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 113RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 116RPCh. 8.8 - A rigid 50-L nitrogen cylinder is equipped with a...Ch. 8.8 - Prob. 118RPCh. 8.8 - Prob. 119RPCh. 8.8 - Prob. 120RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 122RPCh. 8.8 - Prob. 123RPCh. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 129RPCh. 8.8 - Prob. 130RPCh. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 133RPCh. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - Prob. 135FEPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - Prob. 138FEPCh. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 142FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A Carnot engine delivers 130 kW of power by operating between temperature reservoirs at 160°C and 1660°C. The entropy change of the high temperature reservoir in kJ/K after 26 min of operation isarrow_forwardHot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 747°C, and 80 m/s, and they exit at a pressure of 85 kPa. Assuming an isentropic efficiency of 92 percent and treating the combustion gases as air, determine the exit velocity.arrow_forwardThe expansion in a turbine is adiabatic and irreversibility. The entropy of the steam at inlet is 6.939 kJ/ kg. k and the turbine exhaust at a pressure of 7 kN/m2 . if the dryness fraction of the steam at exhaust is 0.91, calculate the lost work done due to irreversibility per kg of steam flowing through the turbine. If the inlet pressure 4Mpa, what is the isentropic efficiency of the turbine. Ans [200kJ/kg, 82.3%]arrow_forward
- An adiabatic diffuser at the inlet of a jet engine increases the pressure of the air that enters the diffuser at 11 psia and 30°F to 20 psia. What will the air velocity at the diffuser exit be if the diffuser isentropic efficiency, defined as the ratio of the actual kinetic energy change to the isentropic kinetic energy change, is 82 percent and the diffuser inlet velocity is 1200 ft/s?arrow_forwardCombustion gases enter a gas turbine at 900°C, 800 kPa, and 100 m/s and leave at 650°C, 400 kPa, and 220 m/s. Taking cp = 1.15 kJ/kg·°C and k = 1.3 for the combustion gases, determine the exergy of the combustion gases at the turbine inlet?arrow_forwardCombustion gases enter a gas turbine at 900°C, 800 kPa, and 100 m/s and leave at 650°C, 400 kPa, and 220 m/s. Taking cp = 1.15 kJ/kg·°C and k = 1.3 for the combustion gases, determine the work output of the turbine under reversible conditions. Assume the surroundings to be at 25°C and 100 kPa. Can this turbine be adiabatic?arrow_forward
- Devices can be combined to perform a variety of tasks. An adiabatic compressor, with air as the working fluid, is to be powered by an adiabatic steam turbine, which is also driving a generator. Steam enters the turbine at 12.5 MPa and 500 ∘C at a steady rate of 27.30 kg/s and exits at 10 kPa and a quality of 0.8710. Air enters the compressor at 98 kPa and 295.0 K K at a steady rate of 12.600 kg/s and exits at 1 MPa and 635.0 K. For air, MW=29.0 g/mol, Cp=3.5R. Note: The IUPAC sign convention for work is used. Work into the system has a positive value. What is the magnitude of the power delivered to the generator by the turbine? The answer needs to be in MW.arrow_forwardAir enters a nozzle steadily at 200 kPa and 65°C with a velocity of 35 m/s and exits at 95 kPa and 240 m/s. The heat loss from the nozzle to the surrounding medium at 17°C is estimated to be 3 kJ/kg. Determine the exergy destroyed during this process.arrow_forwardAn ideal gas (R= 0.2081 kJ/kgK, Cp=0.5203 kJ/kgK, Cv=0.3122 kJ/kgK) at 90 kPa pressure and 25°C temperature at the inlet of an adiabatic compressor is compressed to 900 kPa. If the mass flow rate of the gas is 0.08 kg/s, find the isentropic efficiency of the compressor since 23.4 kW of compressor power is required. Please choose one: a. 90% b. 75% c. 80% D. 60% to. 70%arrow_forward
- Devices can be combined to perform a variety of tasks. An adiabatic compressor, with air as the working fluid, is to be powered by an adiabatic steam turbine, which is also driving a generator. Steam enters the turbine at 12.5 MPa and 500 ∘C500 ∘C at a steady rate of 27.30 kg/s27.30 kg/s and exits at 10 kPa and a quality of 0.8710.0.8710. Air enters the compressor at 98 kPa and 295.0 K295.0 K at a steady rate of 12.600 kg/s12.600 kg/s and exits at 1 MPa and 635.0 K.635.0 K. For air, MW=29.0 g/mol,MW=29.0 g/mol, ??=3.5R.Cp=3.5R. Note: The IUPAC sign convention for work is used. Work into the system has a positive value. What is the magnitude of the power delivered to the generator by the turbine?arrow_forwardAir in a large building is kept warm by heating it with steam in a heat exchanger. Saturated water vapor enters this unit at 35°C at a rate of 10,000 kg/h and leaves as saturated liquid at 32°C. Air at 1-atm pressure enters the unit at 20°C and leaves at 30°C at about the same pressure. Determine the rate of entropy generation associated with this process.arrow_forwardAn ideal gas (R= 0.2081 kJ/kgK, Cp=0.5203 kJ/kgK, Cv=0.3122 kJ/kgK) is compressed steadily from 100 kPa and 30°C to 600 kPa by an adiabatic compressor having an isentropic efficiency of 90%. If the compressor consumes 20 kW of power while operating, the mass flow rate of the gas isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License