Concept explainers
(a)
The final temperature of the steam in tank A.
The final temperature of the steam in tank B.
(a)
Answer to Problem 99RP
The final temperature of the steam in tank A is
The final temperature of the steam in tank B is
Explanation of Solution
Write the expression to calculate the specific volume of saturated water
Here, specific volume of saturated liquid is
Write the expression to calculate the specific internal energy of saturated water
Here, specific internal energy of saturated liquid is
Write the expression to calculate the specific entropy of saturated water
Here, specific entropy of saturated liquid is
Write the expression to calculate the mass from the specific volume.
Write the mass balance equation for the fluid flow process.
Here, mass of the steam entered is
Write the energy balance equation for the entire system considering it as a stationary closed system.
Here, net energy input to the system is
Conclusion:
For Tank A:
Refer the Table A-5 of “Saturated water: Pressure”, obtain the properties of steam at the pressure
Substitute
Substitute
Substitute
Refer the Table A-5 of “Saturated water: Pressure”, obtain the properties of steam at the pressure
Thus, the final temperature of the steam in tank A is
Write the final specific entropy of steam in tank A from isentropic relation.
Substitute
Substitute
Substitute
For Tank B:
Refer to Table A-6 of “Superheated water”, obtain the properties of steam for pressure
Substitute
Substitute
Write the expression to calculate the mass flowing into tank B
Substitute
Calculate the final mass of steam in tank B
Substitute
Write the expression to calculate the final specific volume of steam in tank B from Equation (IV).
Substitute
Substitute
From the Table A-4 of “Saturated water: Temperature”, obtain the properties of water in tank B at specific volume of
Thus, the final temperature of the steam in tank B is
(b)
The amount of work potential wasted during the process.
(b)
Answer to Problem 99RP
The amount of work potential wasted during the process is
Explanation of Solution
Write the entropy generation
Here, entropy input to the system is
Write the expression to calculate the exergy destroyed
Here, the surrounding’s temperature is
Conclusion:
Substitute
Substitute
Thus, the amount of work potential wasted during the process is
Want to see more full solutions like this?
Chapter 8 Solutions
Thermodynamics: An Engineering Approach
- Two rigid tanks are connected by a valve. Tank A contains 0.25 m³ of water at 450 kPa and 75 percent quality. Tank B contains 0.55 m³ of water at 300 kPa and 250°C. The valve is now opened, and the two tanks eventually come to the same state. Determine the pressure and the amount of heat transfer when the system reaches thermal equilibrium with the surroundings at 25°C. Show your complete solution.arrow_forwardSteam enters a two-stage adiabatic turbine at 8 MPa and 500°C. It expands in the first stage to a state of 2 MPa and 350°C. Steam is then reheated at constant pressure to a temperature of 500°C before it is routed to the second stage, where it exits at 30 kPa and a quality of 97 percent. The work output of the turbine is 5 MW. Assuming the surroundings to be at 25°C, determine the reversible power output and the rate of exergy destruction within this turbine.arrow_forwardTwo rigid tanks are connected by a valve, as shown in Figure Q3 below. Tank A is insulated and contains 0.2 m3 of steam at 400 kPa and 80 percent quality. Tank B is uninsulated and contains 3 kg of steam at 200 kPa and 250°C. The valve is now opened, and steam flows from tank A to tank B until the pressure in tank A drops to 300 kPa. During this process 600 kJ of heat is transferred from tank B to the surroundings at 0°C. Assuming the steam remaining inside tank A to have undergone a reversible adiabatic process, 600 kJ A B 0.2 m3 3 kg steam steam 400 kPa 200 kPa x = 0.8 250°C Figure Q3 (a) Calculate the final temperature in tank A. (b) Calculate the quality of the steam in tank A at 300 kPa.arrow_forward
- A rigid, insulated tank that is initially evacuated is connected through a valve to a supply line that carries steam at 4 MPa. Now the valve is opened, and steam is allowed to flow into the tank until the pressure reaches 4 MPa, at which point the valve is closed. If the final temperature of the steam in the tank is 550°C, determine the temperature of the steam in the supply line and the flow work per unit mass of the steam.arrow_forwardThe pressure of saturated water vapor in an insulated tank with a volume of 5.7 m3 is 350 kPa. The tank is connected to the superheated steam pipe with a valve. The pressure of the superheated steam flowing in the pipe is 2.8 MPa and the temperature is 580oC. By opening the valve, the pressure of the water vapor in the tank is filled until it reaches 2.8 MPa. Calculate the second law efficiency of the filling process.arrow_forwardA well-insulated 4-m * 4-m * 5-m room initially at 10C is heated by the radiator of a steam-heating system. The radiator has a volume of 15 L and is filled with superheated vapor at 200 kPa and 200C. At this moment both the inlet and the exit valves to the radiator are closed. A 120-W fan is used to distribute the air in the room. The pressure of the steam is observed to drop to 100 kPa after 30 min as a result of heat transfer to the room. Assuming constant specific heats for air at room temperature, determine (a) the average temperature of air in 30 min, (b) the entropy change of the steam, (c) the entropy change of the air in the room, and (d) the entropy generated during this process, in kJ/K. Assume the air pressure in the room remains constant at 100 kPa at all times.arrow_forward
- An insulated piston cylinder assembly initially contains 5 L of saturated liquid water at a constant pressure of 175 kPa. There is an electric heater and a mixer inside the cylinder. Then the water is mixed for 45 minutes on the one hand and heated by a heater with 8 A current flowing through it on the other hand. During this process at constant pressure, half of the liquid evaporates and 400 kJ of work is done by the mixer. Plot the potential of the electrical source on the P-v diagram.arrow_forwardA rigid tank of 0.22-m volume initially contains saturated vapor refrigerant-134a at 1.2 MPa. The tank is connected by a valve to a supply line that carries refrigerant-134a at 1.6 MPa and 46 C. The valve is opened, and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains saturated liquid at 1.6 MPa. Determine (a) the mass of the refrigerant that has entered the tank and (b) the amount of heat transfer.arrow_forwardA piston–cylinder device initially contains 0.6 kg of steam with a volume of 0.1 m3 . The mass of the piston is such that it maintains a constant pressure of 800 kPa. The cylinder is connected through a valve to a supply line that carries steam at 5 MPa and 500°C. Now the valve is opened and steam is allowed to flow slowly into the cylinder until the volume of the cylinder doubles and the temperature in the cylinder reaches 250°C, at which point the valve is closed. Determine the amount of heat transfer.arrow_forward
- A piston–cylinder device initially contains 0.6 kg of steam with a volume of 0.1 m3 . The mass of the piston is such that it maintains a constant pressure of 800 kPa. The cylinder is connected through a valve to a supply line that carries steam at 5 MPa and 500°C. Now the valve is opened and steam is allowed to flow slowly into the cylinder until the volume of the cylinder doubles and the temperature in the cylinder reaches 250°C, at which point the valve is closed. Determine the mass of steam that has entered.arrow_forward3 A 40-L electrical radiator containing heating oil is placed in a 50-m³ room. Both the room and the oil in the radiator are initially at 10°C. The radiator with a rating of 2.4 kW is now turned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s. After some time, the average temperature is measured to be 20°C for the air in the room, and 50°C for the oil in the radiator. Taking the density and the specific heat of the oil to be 950 kg/m3 and 2.2 kJ/kg-°C, respectively, determine how long the heater is kept on. Assume the room is well sealed so that there are no air leaks. The gas constant of air is R = 0.287 kPa-m³/kg-K (Table A-1). Also, c = 0.718 kJ/kg-K for air at room temperature (Table A-2). Oil properties are given to be p = 950 kg/m³ and Cp = 2.2 kJ/kg.°C. 3 10°C Room Radiator The heater is kept on for Q min. 4arrow_forwardA rigid tank initially contains 0.9 kg of water. Then it is filled more with steam from a supply line at 1.5 MPa and 320°C until the pressure in the tank reaches to the supply pressure (1.5 MPa) at 360°C. The final mass in the tank is 2 kg and the process is adiabatic. • Calculate the initial specific internal energy of the water. • Comment on the initial phase of the water. Is it mixture or superheated or?. steam supply line initially 0.9 kg waterarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY