THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.8, Problem 131RP
Nitrogen gas enters a diffuser at 100 kPa and 110°C with a velocity of 205 m/s and leaves at 110 kPa and 45 m/s. It is estimated that 2.5 kJ/kg of heat is lost from the diffuser to the surroundings at 100 kPa and 27°C. The exit area of the diffuser is 0.04 m2. Accounting for the variation of the specific heats with temperature, determine (a) the exit temperature, (b) the rate of exergy destruction, and (c) the second-law efficiency of the diffuser.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3) Refrigerant-134a enters a diffuser steadily as saturated vapor at 800 kPa with a velocity of 120
m/s, and it leaves at 900 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it
passes through the diffuser. If the exit area is 80 percent greater than the inlet area, determine (a)
the exit velocity and (b) the mass flow rate of the refrigerant.
(for R-134, vs00 kPa= 0.025621 m/kg; hs00 kPa-267.29 kj/kg)
(for R-134, v900 kPa, 40°C= 0.023375 m'/kg; h9oo kPa, 40°C-274.17 kj/kg)
Refrigerant-134a enters a diffuser steadily as saturated vapor at 700 kPa with a velocity of 150 m/s, and it leaves at 800 kPa and 50°C. The refrigerant is gaining heat at a rate of 5kJ/s as it passes through the diffuser. If the exit area is 70 percent greater than the inlet area, determine (a) the exit velocity and (b) the mass flow rate of the refrigerant.
blait
(Q3) Refrigerant-134a enters a compressor at 180 kPa and 50°C at a
rate of 195 m³/s and leaves at a pressure of 800 kPa The refrigerant
experiences a heat loss through the casing to the surrounding at a rate
of 2 kJ/kg. The power input to the compressor is 410 kW. Determıne
(a) the mass flow rate of the refrigerant and (b) the exit temperature.
R-134a
Chapter 8 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - Prob. 4PCh. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...Ch. 8.8 - Prob. 7PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 9PCh. 8.8 - 8–10C Can a process for which the reversible work...
Ch. 8.8 - 8–11C Consider a process during which no entropy...Ch. 8.8 - Prob. 12PCh. 8.8 - 8–13E Saturated stem is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - Prob. 15PCh. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - Prob. 21PCh. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 23PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Prob. 26PCh. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - Prob. 33PCh. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - Prob. 41PCh. 8.8 - Prob. 42PCh. 8.8 - Prob. 43PCh. 8.8 - Prob. 44PCh. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 48PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 55PCh. 8.8 - Prob. 56PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 58PCh. 8.8 - Prob. 59PCh. 8.8 - Prob. 60PCh. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Prob. 62PCh. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 64PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 66PCh. 8.8 - Prob. 67PCh. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - Prob. 73PCh. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - Prob. 76PCh. 8.8 - Prob. 77PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Prob. 79PCh. 8.8 - Prob. 80PCh. 8.8 - Prob. 81PCh. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - 8–83 Air enters a compressor at ambient conditions...Ch. 8.8 - Prob. 84PCh. 8.8 - Prob. 85PCh. 8.8 - Prob. 86RPCh. 8.8 - Prob. 87RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 89RPCh. 8.8 - Prob. 91RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Prob. 96RPCh. 8.8 - Prob. 97RPCh. 8.8 - Prob. 98RPCh. 8.8 - Prob. 99RPCh. 8.8 - Prob. 100RPCh. 8.8 - Prob. 101RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - Prob. 112RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 114RPCh. 8.8 - Prob. 115RPCh. 8.8 - Prob. 116RPCh. 8.8 - Prob. 117RPCh. 8.8 - Prob. 118RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 121RPCh. 8.8 - Prob. 122RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Prob. 128RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 130RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 134RPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Prob. 139FEPCh. 8.8 - Prob. 140FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...Ch. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 145FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water flows through a horizontal coil heated from the outside by high temperature flue gases. As it passes through the coil, the water changes state from liquid at 200 kPa and 80 deg C to vapor at 100kPa and 125 deg C. Its entering velocity is 3m/s and exit velocity is 200 m/s. Determine the heat transferred through the coil per unit mass, Enthalpies of inlet and outlet streams are 334.9 kJ/kg and 2726.5 kJ/kgarrow_forwardhelp photo questionarrow_forwardWater vapor enters a turbine with a mass flow rate of 3 kg/s, and at a temperature and pressure of 500°C and 1 MPa, respectively. The heat loss inside the turbine is 250 kW and the steam leaves the turbine at a temperature and pressure of 150°C and 100 kPa. Neglect any changes in the velocity or the elevation. The work output of the turbine is used to operate a heat pump whose COP value is 2. Determine the rate of heat removal from the sink (1) and the rate of heat rejection to the source (2) of this heat pump. a. 3715 kW (removal), 1857.5 kW (rejection) b. 1857.5 kW (removal), 3500 kW (rejection) c. 1857.5 kW (removal), 3715 kW (rejection) d. 1500 kW (removal), 3715 kW (rejection)arrow_forward
- Steam enters a diffuser at 10 kPa and 60°C with a velocity of 375 m/s and exits as saturated vapor at 50°C and 70 m/s. The exit area of the diffuser is 3 m2 . Determine the mass flow rate of the steam.arrow_forwardAir enters an adiabatic compressor at 100 kPa and 17°C at a rate of 2.4m³/s with an isentropic efficiency of 83.085%, and leaves at 257°C. Neglecting the changes in kinetic and potential energies, determine (a) the exit pressure of air (b) the power required to drive the compressor. Hint: We worked on a similar problem in class (example 7-15 for compressor, ideal gas with variable specific heats). It will be helpful to revisit it before you start this one.arrow_forward(c) Refrigerant-134a at 700 kPa and 120°C enters an adiabatic nozzle steadily with a velocity of 20 m/s and leaves at 400 kPa and 30°C. Determine: (i) The exit velocity; (ii) The ratio of the inlet to exit area A1/A2.arrow_forward
- A turbine is built so that steam enters at the top 180 meters from the exit. Steam with an enthalpy of 3596.939 kJ/kg enters at 2MPa, 400°C, and leaves at 15 kPa with an enthalpy of 2780.26 kJ/kg. When compared to its output velocity of 170 m/s, its velocity when it enters is practically negligible. While passing through the turbine at a rate of 40 MW, heat is also absorbed. If the steam is flowing at a rate of 8 kg/s, How much power is generated by the turbine? Include a completely labeled schematic diagram of the turbine.arrow_forwardIn a gas turbine plant, air enters the compressor at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 382°C with a velocity of 80 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 230 kW. (i) Identify the enthalpy of air (units: kJ/kg) at the compressor inlet, (ii) Identify the enthalpy of air (units: kJ/kg) at the compressor exit, and (iii) Determine the mass flow rate of air (units: kg/s) through the compressor.arrow_forwardAir (MW=29 kg/kmol) at 115.00 kPa and 285.00 K is compressed steadily to 600.0 kPaThe mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60, calculate the following. What is the actual work interaction term? What is the actual exit temperature of the air?arrow_forward
- In an experiment , a certain amount of air is heated at constant pressure from 1,7 cubic meters,20 degrees celsius and 97 KPa to 404 degrees celsius. It is then cooled at constant volume back to its initial temperature.Take specific heat at constant pressure and constant volume for air as 1,005 KJ/kg K and 0,717 KJ/kg K repectively. Calculate: 1. the change specific entropy in the cooling process in 1 decimal place and SI unit 2.the change specific entropy in the constant pressure process in 1 decimal place ans SI unitarrow_forwardQ1) A super heated steam enters an adiabatic gas turbine at 12bar and 500 °C and leaves at 400 Kpa and 150 °C. The steamenters the turbine through a 0.1 m2 opening with an averagevelocity of 25 m/s, and exhausts through a 1.2 m2 opening.Determine(a) The mass flow rate of air through the turbine(b) The exhaust velocity (V2)(c) The power produced by the turbine in MW.arrow_forwardWater flows through a horizontal coil heated from the outside by high temperature flue gases. As it passes through the coil, the water changes state from liquid at 200KPa and 80°C to vapor at 100 KPa and 125°C. Its entering velocity is 3 m/s and exit velocity is 200 m/s. Determine the heat transferred through the coil per unit mass. Enthalpies inlet and outlet streams are: 334.9 Kj/Kg; outlet at 2726.5 KJ/Kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License