a)
The exit temperature
a)

Answer to Problem 105RP
The exit temperature is
Explanation of Solution
Write energy balance equation for a closed system of steam.
Here, temperature at inlet and outlet condition is
Write the expression for the dryness fraction at state 2
Here,
Write the expression of the internal energy at state 2
Write the expression of the entropy at state 2
Write the expression of the mass of steam
Here, initial volume of steam is
Write the expression of the mass of air
Here, initial temperature is
Write the expression of the amount of fan work done in 24 min.
Here, change in time is
Write the expression of energy balance equation for a closed system of air.
Here, amount of heat transfer injected to the steam radiator is
Conclusion:
From Table A-1, “molar mass, gas constant, and critical point properties”, Obtain the gas constant
From Table A-3, “properties of common liquids, solids, and foods”, Obtain the specific heat
From Table A-6E, “Superheated water”, at the pressure of
From to Table A-5, “saturated water – pressure table”, obtain the following properties at the pressure of
Substitute
Substitute 0.6376 for
Substitute 0.6376 for
Substitute
0.01388 kg for m,
Calculate the volume of air.
Substitute 283 K for
Substitute
Substitute 12.58 kJ for
Thus, the exit temperature is
b)
The entropy change of the steam.
b)

Answer to Problem 105RP
The entropy change of the steam is
Explanation of Solution
Write the expression the entropy change of the steam.
Conclusion:
Substitute 0.01388 kg for m,
Thus, the entropy change of the steam is
c)
The entropy change of the air
c)

Answer to Problem 105RP
The entropy change of the air is
Explanation of Solution
Write the expression for the entropy change of the air.
Conclusion:
Substitute 98.5 kg for
Thus, the entropy change of the air is
d)
The energy destroyed during the process
d)

Answer to Problem 105RP
The energy destroyed during the process is
Explanation of Solution
For a closed system, write the simplification rate form of the entropy balance for the room.
Here, entropy generation is
Calculate the energy destroyed during the process
Here, dead state temperature is
Conclusion:
Substitute
Substitute 283 K for
Thus, the energy destroyed during the process is
Want to see more full solutions like this?
Chapter 8 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
- Consider a 5m by 5m wet concret patio with an average water film thickness of .2mm. Now wind at 50 km/h is blowing over the surface. If the air is at 1 atm, 15oC and 35 percent relative humidity, determine how long it will take for the patio to completely dry.arrow_forward70. Compute the number of cubic centimeters of iron required for the cast-iron plate shown. The plate is 3.50 centimeters thick. Round the answer to the nearest cubic centimeter. 50.0 cm 40.0 cm Radius 150° 115.0 cm- 81.0 cmarrow_forwardLaw of Sines Solve the following problems using the Law of Sin 7. Find side x. All dimensions are in inches. -°-67°-37° 81° x Sin A 8.820 X 67°00' 32°00' a sin A b C sin B sin Carrow_forward
- 35. a. Determine B. b. Determine side b. c. Determine side c. 5.330 in.- ZB 73°30'arrow_forwardConsider a 12 cm internal diameter, 14 m long circular duct whose interior surface is wet. The duct is to be dried by forcing dry air at 1 atm and 15 degrees C throught it at an average velocity of 3m/s. The duct passes through a chilled roo, and it remains at an average temp of 15 degrees C at all time. Determine the mass transfer coeeficient in the duct.arrow_forwardnote n=number of link(dont include the ground link (fixed))arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





