Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
8th Edition
ISBN: 9781119080701
Author: Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.4, Problem 43P
To determine
The ratio of head loss for the actual turbulent flow compared to that if it were laminar flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set
in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its
equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and
k₂ = 2 N/m.
www.m
k₁ = 3
(y₁ = 0).
m₁ = 1
k2=2
(y₂ = 0)
|m₂ = 1
Y2
y 2
System in
static
equilibrium
(Net change in
spring length
=32-31)
System in
motion
Figure Q3 - Coupled mass-spring system
Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively:
Analytically (hand calculations)
100
As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the
spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a
damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is
subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in
a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement:
Analytically (hand calculations)
this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciated
Chapter 8 Solutions
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
Ch. 8.1 - Prob. 1PCh. 8.1 - Rainwater runoff from a parking lot flows through...Ch. 8.1 - Blue and yellow streams of paint at 60 °F (each...Ch. 8.1 - Air at 200 °F flows at standard atmospheric...Ch. 8.1 - To cool a given room it is necessary to supply 4...Ch. 8.1 - Prob. 6PCh. 8.1 - Prob. 7PCh. 8.1 - (See The Wide World of Fluids article titled...Ch. 8.2 - For fully developed laminar pipe flow in a...Ch. 8.2 - Prob. 10P
Ch. 8.2 - Prob. 11PCh. 8.2 - The pressure drop needed to force water through a...Ch. 8.2 - Prob. 13PCh. 8.2 - Water flows in a constant-diameter pipe with the...Ch. 8.2 - Prob. 15PCh. 8.2 - Glycerin at 20 °C flows upward in a vertical...Ch. 8.2 - Prob. 17PCh. 8.2 - Prob. 19PCh. 8.2 - Prob. 20PCh. 8.2 - Prob. 21PCh. 8.2 - A liquid with SG = 0.96, μ = 9.2 × 10−4 N • s/m2,...Ch. 8.2 - Prob. 23PCh. 8.2 - Prob. 24PCh. 8.2 - Water at 20 °C flows down a vertical pipe with no...Ch. 8.2 - Prob. 26PCh. 8.3 - For oil (SG = 0.86. µ = 0.025 Ns/m2) flow of 0.2...Ch. 8.3 - Prob. 28PCh. 8.3 - Prob. 29PCh. 8.3 - Prob. 31PCh. 8.4 - Water is pumped between two tanks as shown in Fig....Ch. 8.4 - A person with no experience in fluid mechanics...Ch. 8.4 - During a heavy rainstorm, water from a parking lot...Ch. 8.4 - Water flows through a horizontal plastic pipe with...Ch. 8.4 - Water flows downward through a vertical...Ch. 8.4 - Prob. 37PCh. 8.4 - Water flows through a horizontal 60-mm-diameter...Ch. 8.4 - Prob. 39PCh. 8.4 - Carbon dioxide at a temperature of 0 °C and a...Ch. 8.4 - Blood (assume µ = 4.5 × 10–5 lb · s/ft2, SG = 1.0)...Ch. 8.4 - A 40-m-long, 12-mm-diameter pipe with a friction...Ch. 8.4 - Prob. 43PCh. 8.4 - Prob. 44PCh. 8.4 - Prob. 45PCh. 8.4 - Von Karman suggested that the wholly turbulent...Ch. 8.4 - Prob. 47PCh. 8.4 - Prob. 48PCh. 8.4 - Prob. 49PCh. 8.4 - Air at standard temperature and pressure flows...Ch. 8.4 - Given 90° threaded elbows used in conjunction with...Ch. 8.4 - To conserve water and energy, a “flow reducer” is...Ch. 8.4 - Prob. 53PCh. 8.4 - Water flows from the container shown in Fig....Ch. 8.4 - Prob. 55PCh. 8.4 - Prob. 56PCh. 8.4 - Prob. 57PCh. 8.4 - Prob. 58PCh. 8.4 - Prob. 59PCh. 8.4 - Prob. 60PCh. 8.4 - Prob. 61PCh. 8.4 - Prob. 62PCh. 8.4 - Water at 20 °C flows through a concentric annulus...Ch. 8.4 - Prob. 64PCh. 8.5 - Assume a car’s exhaust system can be approximated...Ch. 8.5 - The pressure at section (2) shown in Fig. P8.66 is...Ch. 8.5 - Prob. 67PCh. 8.5 - The -in.-diameter hose shown in Fig. P8.68 can...Ch. 8.5 - Prob. 69PCh. 8.5 - Prob. 70PCh. 8.5 - Prob. 71PCh. 8.5 - Water at 10 °C is pumped from a lake as shown in...Ch. 8.5 - Prob. 73PCh. 8.5 - Crude oil having a specific gravity of 0.80 and a...Ch. 8.5 - A motor-driven centrifugal pump delivers 15 °C...Ch. 8.5 - Prob. 76PCh. 8.5 - A hydraulic turbine takes water from a lake with...Ch. 8.5 - Water flows through a 2-in.-diameter pipe with a...Ch. 8.5 -
Figure P7.79 shows the 60 °F water flow rates...Ch. 8.5 - Water is pumped through a 60-m-long....Ch. 8.5 - Prob. 81PCh. 8.5 - Prob. 82PCh. 8.5 - Prob. 83PCh. 8.5 - The turbine shown in Fig. P8.85 develops 400 kW....Ch. 8.5 - Water flows from the nozzle attached to the spray...Ch. 8.5 - Prob. 87PCh. 8.5 - Prob. 88PCh. 8.5 - Prob. 89PCh. 8.5 - Prob. 90PCh. 8.5 - Prob. 91PCh. 8.5 - Calculate the water flow rate in the system shown...Ch. 8.5 - Prob. 93PCh. 8.5 -
For the standpipe system shown in Fig. P8.94,...Ch. 8.5 - Water flows through two sections of the vertical...Ch. 8.5 - Prob. 96PCh. 8.5 - Prob. 97PCh. 8.5 - Prob. 98PCh. 8.5 - Prob. 99PCh. 8.5 - Prob. 100PCh. 8.5 - Prob. 101PCh. 8.5 - Prob. 102PCh. 8.5 - Prob. 103PCh. 8.5 - Prob. 104PCh. 8.5 - Prob. 105PCh. 8.5 - Prob. 106PCh. 8.5 - Prob. 107PCh. 8.5 - For a given head loss per unit length, what effect...Ch. 8.5 - It is necessary to deliver 270 ft3/min of water...Ch. 8.5 - A 10-m-logn, 5.042-cm, I.D. coper pipe has two...Ch. 8.5 - Prob. 111PCh. 8.5 - Prob. 112PCh. 8.5 - Prob. 113PCh. 8.5 - Prob. 114PCh. 8.5 - Prob. 115PCh. 8.5 - Prob. 117PCh. 8.5 - Prob. 118PCh. 8.5 - Prob. 119PCh. 8.5 - Prob. 120PCh. 8.5 - Prob. 121PCh. 8.6 - Water flows through the orifice meter shown in...Ch. 8.6 - Water flows through the orifice meter shown in Fig...Ch. 8.6 - Water flows through the orifice meter shown in...Ch. 8.6 - Water flows through a 40-mm-diameter nozzle meter...Ch. 8.6 - Gasoline flows through a 35-mm-diameter pipe at a...Ch. 8.6 - Air at 200 °F and 60 psia flows in a...Ch. 8.6 - A 2.5-in.-diameter flow nozzle meter is installed...Ch. 8.6 - A 0.064-m-diameter nozzle meter is installed in a...Ch. 8.6 - Prob. 130PCh. 8.6 - Prob. 131PCh. 8.6 - If the fluid flowing in Problem 8.131 were air,...Ch. 8.6 - The scale reading on the rotameter shown in Fig....Ch. 8.7 - Prob. 1LLPCh. 8.7 - Prob. 2LLPCh. 8.7 - Prob. 3LLP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please answer with the sketches.arrow_forwardThe beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forwardA beam of the cross section shown in Figure Q3 is made of a steel that is assumed to be elastic- perfectectly plastic material with E = 200 GPa and σy = 240 MPa. Determine: i. The shape factor of the cross section ii. The bending moment at which the plastic zones at the top and bottom of the bar are 30 mm thick. 15 mm 30 mm 15 mm 30 mm 30 mm 30 mmarrow_forward
- A torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild, using: (a) The maximum shearing stress theory (b) The maximum distortion energy theory T Figure Q1arrow_forwardAn external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forwardso A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forward
- Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardI need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forward
- chanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forwardA thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forwardA ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License