
a.
To explain:
The number of chromosomes in individual with allotriploidy including species I and II.
Introduction:
The chromosomal mutations not only involve the change in the structure of chromosome rather it also includes a change in the number of chromosomes. Aneuploidy is the gain or deletion of one ormore individual chromosome. Polyploidy refers to a gain of the whole set of chromosomes. Polyploidy is of two types, namely- autopolyploidy and allopolyploidy.
a.

Explanation of Solution
Allotriploidy arises when a diploid gamete fuses with haploid gamete. There are two possibilities through which allotriploid can form. One possibility is that it inherits
The number of chromosomes in allotriploid individual including species I and species II if it inherits
Another possibility is that it inherits
The number of chromosomes in allotriploid individual if it inherits
b.
To explain:
The number of chromosomes in individual with autotetraploidy in species II.
Introduction:
The chromosomal mutations not only involve the change in the structure of chromosome rather it also includes a change in the number of chromosomes. Aneuploidy is the gain or deletion of one orthe more individual chromosome. Polyploidy refers to a gain of the whole set of chromosomes. Polyploidy is of two types, namely- autopolyploidy and allopolyploidy.
b.

Explanation of Solution
Autotetraploidy results when there occurs four copies of the whole set of chromosomes in individuals. The autotetraploid individual in species II will have a following number of chromosomes.
The number of chromosomes in autotetraploidindividual of species II will be
c.
To explain:
The number of chromosomes in an individual with trisomy in species I.
Introduction:
The chromosomal mutations not only involve the change in the structure of chromosome rather it also includes a change in the number of chromosomes. Aneuploidy is the gain or deletion of one ormore individual chromosome. Polyploidy refers to a gain of the whole set of chromosomes. Polyploidy is of two types, namely- autopolyploidy and allopolyploidy.
c.

Explanation of Solution
Trisomy is the addition of a single chromosome in the whole set of chromosomes. Addition of single chromosome refers to the gain of one extra homologous copy of individual chromosome. Trisomy is represented as
The number of chromosomes in trisomicindividual of species I will be
d.
To explain:
The number of chromosome in individual with monosomy in species II.
Introduction:
The chromosomal mutations not only involve the change in the structure of chromosome rather it also includes change in the number of chromosomes. Aneuploidy is the gain or deletion of one ofmore individual chromosome. Polyploidy refers to gain of whole set of chromosomes. Polyploidy is of two types, namely- autopolyploidy and allopolyploidy.
d.

Explanation of Solution
Monosomy is the loss of one of the copies of the homologous chromosome. It is represented as
The number of chromosome in individual with monosomy in species II will be
e.
To explain:
The number of chromosome in individual with tetrasomy in species I.
Introduction:
The chromosomal mutations not only involve the change in the structure of chromosome rather it also includes change in the number of chromosomes. Aneuploidy is the gain or deletion of one ofmore individual chromosome. Polyploidy refers to gain of whole set of chromosomes. Polyploidy is of two types, namely- autopolyploidy and allopolyploidy.
e.

Explanation of Solution
Tetrasomy is the acquiring of two nonhomologous chromosomes. It is represented as
The number of chromosome in individual with tetrasomy in species I will be
f.
To explain:
The number of chromosome in individual with allotetraploidy including species I and species II.
Introduction:
The chromosomal mutations not only involve the change in the structure of chromosome rather it also includes change in the number of chromosomes. Aneuploidy is the gain or deletion of one ofmore individual chromosome. Polyploidy refers to gain of whole set of chromosomes. Polyploidy is of two types, namely- autopolyploidy and allopolyploidy.
f.

Explanation of Solution
Allotetraploidy arises when a diploid gamete fuses with diploid gamete or a haploid gamete fuses with triploid gamete. The number of chromosomes in allotetraploid if it inherits
There are two possibilities through which allotetraploid can form. The first possibility is that it inherits
The number of chromosomes in allotetraploid individual if it inherits
The second possibility is that it inherits
The number of chromosomes in allotetraploid individual if it inherits
Conclusion:
Autopolyploids are produced because of mistakes which might occur during mitosis or meiosis which results in the production of extra sets of chromosomes. Aneuploidy can be defined as the increase or decrease in the individual chromosome number. Aneuploidy might arise because of the loss of chromosome during mitosis or meiosis or nondisjunction of homologous chromosomes or sister chromatids. There are four types of aneuploidy, namely- nullisomy, monosomy, trisomy, and tetrasomy.
Want to see more full solutions like this?
Chapter 8 Solutions
Genetics: A Conceptual Approach 6E w/ SaplingPlus (Six-Month Access)
- Using quail and chick embryos, quail-specific antibody and fluorescent tissue-specific antibodies, design an experiment where you investigate the tissues the cranial neural crest can give rise to. What are four derivatives of the cranial neural crest that you expect to see in the resulting chimeric embryos?arrow_forwardDoes the neural crest have to undergo epithelial to mesenchymal transition prior to migration through the developing embryo? Does the neural crest differentiate into different cell types based on their axial position along the anterior and posterior axis?arrow_forwardUsing quail and chicken embryos, what kind of experiment would you conduct to test if rib forming somites have their axial identity specified before segmentation? How do we know this phenotype is due to axial identity being specified before segmentation and not due to our experimental method?arrow_forward
- 8. Aerobic respiration of a 5 mM solution of tripeptide that is composed of the following three amino acids; alanine, leucine and isoleucine. Alanine breaks down to pyruvate, leucine breaks down to Acetyl-CoA and isoleucine breaks down to succinyl-CoA. Alanine NADH FADH2 OP ATP SLP ATP Total ATP Leucine Isoleucine Totals Show your work using dimensional analysis here: 4arrow_forward9. Aerobic respiration of one lipid molecule. The lipid is composed of one glycerol molecule connected to two fatty acid tails. One fatty acid is 12 carbons long and the other fatty acid is 18 carbons long in the figure below. Use the information below to determine how much ATP will be produced from the glycerol part of the lipid. Then, in part B, determine how much ATP is produced from the 2 fatty acids of the lipid. Finally put the NADH and ATP yields together from the glycerol and fatty acids (part A and B) to determine your total number of ATP produced per lipid. Assume no other carbon source is available. fatty acids glycerol 18 carbons 12 carbons 0=arrow_forwardinfluences of environment on the phenotype.arrow_forward
- What is the difference between codominance and phenotypic plasticity?arrow_forwardExplain the differences between polygeny and pleiotropy,arrow_forwardIf using animals in medical experiments could save human lives, is it ethical to do so? In your answer, apply at least one ethical theory in support of your position.arrow_forward
- You aim to test the hypothesis that the Tbx4 and Tbx5 genes inhibit each other's expression during limb development. With access to chicken embryos and viruses capable of overexpressing Tbx4 and Tbx5, describe an experiment to investigate whether these genes suppress each other's expression in the limb buds. What results would you expect if they do repress each other? What results would you expect if they do not repress each other?arrow_forwardYou decide to delete Fgf4 and Fgf8 specifically in the limb bud. Explain why you would not knock out these genes in the entire embryo instead.arrow_forwardYou implant an FGF10-coated bead into the anterior flank of a chicken embryo, directly below the level of the wing bud. What is the phenotype of the resulting ectopic limb? Briefly describe the expected expression domains of 1) Shh, 2) Tbx4, and 3) Tbx5 in the resulting ectopic limb bud.arrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education





