Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.4, Problem 18P
To determine
Find the distributed load if the end B is displaced 0.12 in. downward.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The rigid beam is supported by a pin at C and an A-36 steel guy wire AB. If the wire has a diameter of 0.2 in., determine the distributed load w if the end B is displaced 0.75 in. downward.
The rigid beam is supported by a pin at C and an A-36 steel guy wire AB.
30
10 ft
Part A
If the wire has a diameter of 0.5 in., determine how much it stretches when a distributed load of 190 lb/ft acts on the beam. The material remains elastic.
Express your answer to three significant figures and include appropriate units.
µA
?
SAB = 0.02668
in
The rigid beam is supported by a pin at C and an A-36 steel guy wire AB.
Part A
If the wire has a diameter of 0.2 in., determine the distributed load w if the end B is displaced 0.25 in. downward.
Express your answer to three significant figures.
ΠΑΣΦ
W =
vec
?
kip
ft
W
-10 ft
30°
B
Chapter 8 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 8.4 - Define a homogeneous material.Ch. 8.4 - Prob. 2FPCh. 8.4 - Prob. 3FPCh. 8.4 - Prob. 4FPCh. 8.4 - Prob. 5FPCh. 8.4 - As the temperature increases the modulus of...Ch. 8.4 - Prob. 7FPCh. 8.4 - Prob. 8FPCh. 8.4 - Prob. 9FPCh. 8.4 - Prob. 10FP
Ch. 8.4 - The material for the 50-mm-long specimen has the...Ch. 8.4 - If the elongation of wire BC is 0.2 mm after the...Ch. 8.4 - A tension test was performed on a steel specimen...Ch. 8.4 - Data taken from a stressstrain test for a ceramic...Ch. 8.4 - Data taken from a stressstrain test for a ceramic...Ch. 8.4 - Prob. 4PCh. 8.4 - The stress-strain diagram for a steel alloy having...Ch. 8.4 - Prob. 6PCh. 8.4 - The rigid beam is supported by a pin at C and an...Ch. 8.4 - The rigid beam is supported by a pin at C and an...Ch. 8.4 - Prob. 9PCh. 8.4 - The stressstrain diagram for an aluminum alloy...Ch. 8.4 - The stressstrain diagram for an aluminum alloy...Ch. 8.4 - Prob. 12PCh. 8.4 - A bar having a length of 5 in. and cross-sectional...Ch. 8.4 - The rigid pipe is supported by a pin at A and an...Ch. 8.4 - The rigid pipe is supported by a pin at A and an...Ch. 8.4 - Prob. 16PCh. 8.4 - The rigid beam is supported by a pin at C and an...Ch. 8.4 - Prob. 18PCh. 8.4 - Prob. 19PCh. 8.6 - A 100 mm long rod has a diameter of 15 mm. If an...Ch. 8.6 - A solid circular rod that is 600 mm long and 20 mm...Ch. 8.6 - Prob. 15FPCh. 8.6 - Prob. 16FPCh. 8.6 - The acrylic plastic rod is 200 mm long and 15 mm...Ch. 8.6 - The plug has a diameter of 30 mm and fits within a...Ch. 8.6 - The elastic portion of the stress-strain diagram...Ch. 8.6 - The elastic portion of the stress-strain diagram...Ch. 8.6 - The brake pads for a bicycle tire arc made of...Ch. 8.6 - The lap joint is connected together using a 1.25...Ch. 8.6 - The lap joint is connected together using a 1.25...Ch. 8.6 - Prob. 27PCh. 8.6 - The shear stress-strain diagram for an alloy is...Ch. 8.6 - Prob. 29PCh. 8 - The elastic portion of the tension stress-strain...Ch. 8 - Prob. 2RPCh. 8 - Prob. 3RPCh. 8 - Prob. 4RPCh. 8 - Prob. 5RPCh. 8 - Prob. 6RPCh. 8 - The stress-strain diagram for polyethylene, which...Ch. 8 - The pipe with two rigid caps attached to its ends...Ch. 8 - Prob. 9RPCh. 8 - Prob. 10RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The truss is constructed from three aluminum alloy members, each having a cross-sectional area of A = 800 mm² and an elastic modulus of E= 70 GPa. Assume a = 3.4 m, b = 10.9 m, and c = 4.5 m. If the horizontal displacement of roller B must not exceed 6.4 mm calculate the maximum vertical load Pmax that can be supported by the truss. C L₂ a Answer: Pmax= P b KN Barrow_forwardThe simply supported beam is built up from three boards by nailing them together as A, В shown. Determine the L1 L2 maximum allowable bf spacing s of the nails to support that load, if each nail can resist a tf tw shear force of V kN. hw tf P=17KN V=2kN L1=3.1m L2=2.5m bf=120mm tf=20mm hw=270mm tw=15mmarrow_forward) The post is constructed from concrete and six A-36 steel reinforcing rods. If it is subjected to an axial force of 900 kN, determine the required diameter of each rod so that one-fifth of the load is carried by the steel and four-fifths bythe concrete. Est = 200 GPa, Ec = 25 GPa. 900 kN 250 mm 375 mmarrow_forward
- The rigid bar is pinned at A and supported by two aluminum rods, each having a diameter of 1 in. a modulus of elasticity Eal = 10(103) ksi, and yield stress of (sY)al = 40 ksi. If the bar is initially vertical, determine the angle of tilt of the bar when the 20-kip load is applied.arrow_forwardThe rigid beam rests in the horizontal position on two 2014-T6 aluminum cylinders having the unloaded lengths shown. If each cylinder has a diameter of 30 mm, determine the placement x of the applied 80-kN load so that the beam remains horizontal. What is the new diameter of cylinder A after the load is applied? nal = 0.35.arrow_forwardThe rigid pipe is supported by a pin at A and an A-36 guy wire BD. The wire has a diameter of 0.27 in. Determine the load P if the end C is displaced 0.075 in. downward.arrow_forward
- The aluminum block has a rectangular cross section and is subjected to an axial compressive force of 8 kip. If the 1.5-in. side changed its length to 1.500132 in., determine the Poisson's ratio. Assume modulus of elasticity (E) = 10 x 10^3 ksi indicate the free body diagramarrow_forwardThe assembly consists of two rigid bars that are originally horizontal. They are supported by pins and 0.25-in.-diameter A-36 steel rods. If the vertical load of 5 kip is applied to the bottom bar AB, determine the displacement at C, B, and E.arrow_forwardThe rigid beam is supported at its ends by two A-36 steel tie rods. If the allowable stress for the steel is sallow = 16.2 ksi, the load w = 3 kip>ft, and x = 4 ft, determine the smallest diameter of each rod so that the beam remainsin the horizontal position when it is loaded.arrow_forward
- Determine the elongation of the bar in Problem when both the load P and the supports are removed.arrow_forward943. The tapered member is fixed connected at its ends A and B and is subjected to a load P = 35 kN at x = 750 mm. Determine the reactions at the supports The material is 50 mm thick and is made from 2014-T6 aluminum. 150 gim - 1500 mmarrow_forwardThe two bars are made of a material that has the stress-strain diagram shown. If the cross-sectional area of bar AB is 1.5 in2 and BC is 4 in2, determine the largest force P that can be supported before any member fractures. Assume that buckling does not occur.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License