DISCRETE MATHEMATICS WITH APPLICATION (
5th Edition
ISBN: 9780357097717
Author: EPP
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.3, Problem 5ES
To determine
To find the distinct equivalence classes of R.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Page < 2
of 2
- ZOOM +
The set of all 3 x 3 upper triangular matrices
6) Determine whether each of the following sets, together with the standard
operations, is a vector space. If it is, then simply write 'Vector space'. You do not
have to prove all ten vector space axioms. If it is not, then identify one of the ten
vector space axioms with its number in the attached sheet that fails and also show
that how it fails.
a) The set of all polynomials of degree four or less.
b) The set of all 2 x 2 singular matrices.
c) The set {(x, y) : x ≥ 0, y is a real number}.
d) C[0,1], the set of all continuous functions defined on the interval [0,1].
7) Given u = (-2,1,1) and v = (4,2,0) are two vectors in R³-space. Find u xv and
show that it is orthogonal to both u and v.
8) a) Find the equation of the least squares regression line for the data points
below.
(-2,0), (0,2), (2,2)
b) Graph the points and the line that you found from a) on the same Cartesian
coordinate plane.
1. A consumer group claims that the mean annual consumption of cheddar cheese by a person in
the United States is at most 10.3 pounds. A random sample of 100 people in the United States has
a mean annual cheddar cheese consumption of 9.9 pounds. Assume the population standard
deviation is 2.1 pounds. At a = 0.05, can you reject the claim? (Adapted from U.S. Department of
Agriculture)
State the hypotheses:
Calculate the test statistic:
Calculate the P-value:
Conclusion (reject or fail to reject Ho):
2. The CEO of a manufacturing facility claims that the mean workday of the company's assembly
line employees is less than 8.5 hours. A random sample of 25 of the company's assembly line
employees has a mean workday of 8.2 hours. Assume the population standard deviation is 0.5
hour and the population is normally distributed. At a = 0.01, test the CEO's claim.
State the hypotheses:
Calculate the test statistic:
Calculate the P-value:
Conclusion (reject or fail to reject Ho):
Statistics
Page <
1
of 2
-
ZOOM +
1) a) Find a matrix P such that PT AP orthogonally diagonalizes the following matrix
A.
= [{² 1]
A =
b) Verify that PT AP gives the correct diagonal form.
2
01
-2
3
2) Given the following matrices A =
-1
0
1] an
and B =
0
1
-3
2
find the following matrices:
a) (AB) b) (BA)T
3) Find the inverse of the following matrix A using Gauss-Jordan elimination or
adjoint of the matrix and check the correctness of your answer (Hint: AA¯¹ = I).
[1 1 1
A = 3 5 4
L3 6 5
4) Solve the following system of linear equations using any one of Cramer's Rule,
Gaussian Elimination, Gauss-Jordan Elimination or Inverse Matrix methods and
check the correctness of your answer.
4x-y-z=1
2x + 2y + 3z = 10
5x-2y-2z = -1
5) a) Describe the zero vector and the additive inverse of a vector in the vector
space, M3,3.
b) Determine if the following set S is a subspace of M3,3 with the standard
operations. Show all appropriate supporting work.
Chapter 8 Solutions
DISCRETE MATHEMATICS WITH APPLICATION (
Ch. 8.1 - If R is a relation from A to B, xA , and yB , the...Ch. 8.1 - Prob. 2TYCh. 8.1 - Prob. 3TYCh. 8.1 - Prob. 4TYCh. 8.1 - If R is a relation on a set A, the directed graph...Ch. 8.1 - As in Example 8.1.2, the congruence modulo 2...Ch. 8.1 - Prove that for all integers m and n,m-n is even...Ch. 8.1 - The congruence modulo 3 relation, T, is defined...Ch. 8.1 - Define a relation P on Z as follows: For every...Ch. 8.1 - Prob. 5ES
Ch. 8.1 - Let X={a,b,c}. Define a relation J on P(X) as...Ch. 8.1 - Define a relation R on Z as follows: For all...Ch. 8.1 - Prob. 8ESCh. 8.1 - Let A be the set of all strings of 0’s, 1’s, and...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let R be the “less...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let S be the...Ch. 8.1 - Prob. 12ESCh. 8.1 - Prob. 13ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Prob. 16ESCh. 8.1 - Prob. 17ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Exercises 19-20 refer to unions and intersections...Ch. 8.1 - Prob. 20ESCh. 8.1 - Define relation R and S on R as follows:...Ch. 8.1 - Prob. 22ESCh. 8.1 - Prob. 23ESCh. 8.1 - Prob. 24ESCh. 8.2 - For a relation R on a set A to be reflexive means...Ch. 8.2 - For a relation R on a set A to be symmetric means...Ch. 8.2 - For a relation R on a set A to be transitive means...Ch. 8.2 - Prob. 4TYCh. 8.2 - Prob. 5TYCh. 8.2 - Prob. 6TYCh. 8.2 - Prob. 7TYCh. 8.2 - Prob. 8TYCh. 8.2 - Prob. 9TYCh. 8.2 - Prob. 10TYCh. 8.2 - Prob. 1ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - Prob. 3ESCh. 8.2 - Prob. 4ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 15ESCh. 8.2 - Prob. 16ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 18ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 20ESCh. 8.2 - Prob. 21ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 24ESCh. 8.2 - In 9-33, determine whether the given is reflexive...Ch. 8.2 - Prob. 26ESCh. 8.2 - Prob. 27ESCh. 8.2 - Prob. 28ESCh. 8.2 - Prob. 29ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 31ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 34-36, assume that R is a relation on a et A....Ch. 8.2 - Prob. 35ESCh. 8.2 - Prob. 36ESCh. 8.2 - Prob. 37ESCh. 8.2 - Prob. 38ESCh. 8.2 - Prob. 39ESCh. 8.2 - Prob. 40ESCh. 8.2 - Prob. 41ESCh. 8.2 - In 37-42, assume that R and S are relations on a...Ch. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 44ESCh. 8.2 - Prob. 45ESCh. 8.2 - Prob. 46ESCh. 8.2 - Prob. 47ESCh. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 49ESCh. 8.2 - Prob. 50ESCh. 8.2 - Prob. 51ESCh. 8.2 - In 51—53, R, S, and T are relations defined on...Ch. 8.2 - Prob. 53ESCh. 8.2 - Prob. 54ESCh. 8.2 - Prob. 55ESCh. 8.2 - Prob. 56ESCh. 8.3 - For a relation on a set to be an equivalence...Ch. 8.3 - The notation m=n(modd) is...Ch. 8.3 - Prob. 3TYCh. 8.3 - Prob. 4TYCh. 8.3 - Prob. 5TYCh. 8.3 - Prob. 6TYCh. 8.3 - Prob. 1ESCh. 8.3 - Prob. 2ESCh. 8.3 - Prob. 3ESCh. 8.3 - In each of 3—6, the relation R is an equivalence...Ch. 8.3 - Prob. 5ESCh. 8.3 - In each of 3-6, the relation R is an equivalence...Ch. 8.3 - Prob. 7ESCh. 8.3 - Prob. 8ESCh. 8.3 - Prob. 9ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - Prob. 11ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - In each of 7-14, the relation R is an equivalence...Ch. 8.3 - In each of 7—14, the relation R is an equivalence...Ch. 8.3 - Determine which of the following congruence...Ch. 8.3 - Let R be the relation of congruence modulo 3....Ch. 8.3 - Prob. 17ESCh. 8.3 - Prob. 18ESCh. 8.3 - In 19-31, (1) prove that the relation is an...Ch. 8.3 - Prob. 20ESCh. 8.3 - Prob. 21ESCh. 8.3 - Prob. 22ESCh. 8.3 - Prob. 23ESCh. 8.3 - In 19-31. (1) prove that the relation is an...Ch. 8.3 - In 19-31,(1) prove that the relation is an...Ch. 8.3 - Prob. 26ESCh. 8.3 - Prob. 27ESCh. 8.3 - Prob. 28ESCh. 8.3 - Prob. 29ESCh. 8.3 - Prob. 30ESCh. 8.3 - In 19—31, (1) prove that the relation is an...Ch. 8.3 - Prob. 32ESCh. 8.3 - Prob. 33ESCh. 8.3 - Prob. 34ESCh. 8.3 - Prob. 35ESCh. 8.3 - Prob. 36ESCh. 8.3 - Prob. 37ESCh. 8.3 - Prob. 38ESCh. 8.3 - Prob. 39ESCh. 8.3 - Prob. 40ESCh. 8.3 - Prob. 41ESCh. 8.3 - Prob. 42ESCh. 8.3 - Prob. 43ESCh. 8.3 - Let A=Z+Z+ . Define a relation R on A as follows:...Ch. 8.3 - Prob. 45ESCh. 8.3 - Let R be a relation on a set A and suppose R is...Ch. 8.3 - Refer to the quote at the beginning of this...Ch. 8.4 - When letters of the alphabet are encrypted using...Ch. 8.4 - Prob. 2TYCh. 8.4 - Prob. 3TYCh. 8.4 - Prob. 4TYCh. 8.4 - Prob. 5TYCh. 8.4 - Prob. 6TYCh. 8.4 - Prob. 7TYCh. 8.4 - Prob. 8TYCh. 8.4 - Fermat’s little theorem says that if p is any...Ch. 8.4 - Prob. 10TYCh. 8.4 - Prob. 1ESCh. 8.4 - Use the Caesar cipher to encrypt the message AN...Ch. 8.4 - Prob. 3ESCh. 8.4 - Let a=68, b=33, and n=7. Verify that 7|(68-33)....Ch. 8.4 - Prove the transitivity of modular congruence. That...Ch. 8.4 - Prob. 6ESCh. 8.4 - Verify the following statements. 128=2(mod7) and...Ch. 8.4 - Verify the following statements. 45=3 (mod 6) and...Ch. 8.4 - Prob. 9ESCh. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - Prove that for every integer n0,10n=1(mod9) . Use...Ch. 8.4 - Prob. 13ESCh. 8.4 - Prob. 14ESCh. 8.4 - Prob. 15ESCh. 8.4 - In 16-18, use the techniques of Example 8.4.4 and...Ch. 8.4 - Prob. 17ESCh. 8.4 - Prob. 18ESCh. 8.4 - Prob. 19ESCh. 8.4 - Prob. 20ESCh. 8.4 - Prob. 21ESCh. 8.4 - In 19-24, use the RSA cipher from Examples 8.4.9...Ch. 8.4 - Prob. 23ESCh. 8.4 - Prob. 24ESCh. 8.4 - Prob. 25ESCh. 8.4 - Prob. 26ESCh. 8.4 - In 26 and 27, use the extended Euclidean algorithm...Ch. 8.4 - Prob. 28ESCh. 8.4 - Prob. 29ESCh. 8.4 - Prob. 30ESCh. 8.4 - Find an inverse for 210 modulo 13. Find appositive...Ch. 8.4 - Find an inverse for 41 modulo 660. Find the least...Ch. 8.4 - Prob. 33ESCh. 8.4 - Prob. 34ESCh. 8.4 - Prob. 35ESCh. 8.4 - In 36,37,39 and 40, use the RSA cipher with public...Ch. 8.4 - Prob. 37ESCh. 8.4 - Find the least positive inverse for 43 modulo 660.Ch. 8.4 - Prob. 39ESCh. 8.4 - Prob. 40ESCh. 8.4 - Prob. 41ESCh. 8.4 - Prob. 42ESCh. 8.4 - Prob. 43ESCh. 8.5 - Prob. 1TYCh. 8.5 - Prob. 2TYCh. 8.5 - Prob. 3TYCh. 8.5 - Prob. 4TYCh. 8.5 - Prob. 5TYCh. 8.5 - Prob. 6TYCh. 8.5 - Prob. 7TYCh. 8.5 - Prob. 8TYCh. 8.5 - Prob. 9TYCh. 8.5 - Prob. 10TYCh. 8.5 - Each of the following is a relation on {0,1,2,3}...Ch. 8.5 - Prob. 2ESCh. 8.5 - Let S be the set of all strings of a’s and b’s....Ch. 8.5 - Prob. 4ESCh. 8.5 - Prob. 5ESCh. 8.5 - Let P be the set of all people who have ever lived...Ch. 8.5 - Prob. 7ESCh. 8.5 - Prob. 8ESCh. 8.5 - Prob. 9ESCh. 8.5 - Suppose R and S are antisymmetric relations on a...Ch. 8.5 - Let A={a,b}, and supposeAhas the partial order...Ch. 8.5 - Prob. 12ESCh. 8.5 - Let A={a,b} . Describe all partial order relations...Ch. 8.5 - Let A={a,b,c}. Describe all partial order...Ch. 8.5 - Prob. 15ESCh. 8.5 - Consider the “divides” relation on each of the...Ch. 8.5 - Prob. 17ESCh. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Consider the “divides” relation defined on the set...Ch. 8.5 - Prob. 22ESCh. 8.5 - Prob. 23ESCh. 8.5 - Prob. 24ESCh. 8.5 - Prob. 25ESCh. 8.5 - Prob. 26ESCh. 8.5 - Prob. 27ESCh. 8.5 - Prob. 28ESCh. 8.5 - Prob. 29ESCh. 8.5 - Prob. 30ESCh. 8.5 - Prob. 31ESCh. 8.5 - Prob. 32ESCh. 8.5 - Consider the set A={12,24,48,3,9} ordered by the...Ch. 8.5 - Suppose that R is a partial order relation on a...Ch. 8.5 - Prob. 35ESCh. 8.5 - The set A={2,4,3,6,12,18,24} is partially ordered...Ch. 8.5 - Find a chain of length 2 for the relation defined...Ch. 8.5 - Prob. 38ESCh. 8.5 - Prob. 39ESCh. 8.5 - Prob. 40ESCh. 8.5 - Prob. 41ESCh. 8.5 - Prob. 42ESCh. 8.5 - Prob. 43ESCh. 8.5 - Prob. 44ESCh. 8.5 - Prob. 45ESCh. 8.5 - Prob. 46ESCh. 8.5 - Prob. 47ESCh. 8.5 - Prob. 48ESCh. 8.5 - Prob. 49ESCh. 8.5 - A set S of jobs can be ordered by writing x_y to...Ch. 8.5 - Suppose the tasks described in Example 8.5.12...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the Laplace Transform of the function to express it in frequency domain form.arrow_forwardPlease draw a graph that represents the system of equations f(x) = x2 + 2x + 2 and g(x) = –x2 + 2x + 4?arrow_forwardGiven the following system of equations and its graph below, what can be determined about the slopes and y-intercepts of the system of equations? 7 y 6 5 4 3 2 -6-5-4-3-2-1 1+ -2 1 2 3 4 5 6 x + 2y = 8 2x + 4y = 12 The slopes are different, and the y-intercepts are different. The slopes are different, and the y-intercepts are the same. The slopes are the same, and the y-intercepts are different. O The slopes are the same, and the y-intercepts are the same.arrow_forward
- Choose the function to match the graph. -2- 0 -7 -8 -9 --10- |--11- -12- f(x) = log x + 5 f(x) = log x - 5 f(x) = log (x+5) f(x) = log (x-5) 9 10 11 12 13 14arrow_forwardQ2 H let x(+) = &cos (Ait+U) and. 4(+) = ß cos(12t +V), where d. B. 1. In Constants and U,V indep.rus have uniform dist. (-π,π) Show that: ①Rxy (+,4+1)=0 @ Rxy (++) = cos [ when U=V Q3 let x(t) is stochastic process with Wss -121 e, and Rx ltst+1) = ( 2, show that E(X) = E(XS-X₁)² = 2(-1). Qu let x(t) = U Cost + (V+1) Sint, tεIR. where UV indep.rus, and let E (U)-E(V)=0 and E(U) = E(V) = 1, show that Cov (Xt, Xs) = K (t,s) = cos(s-t) X(+) is not WSS.arrow_forwardWhich of the following represents the graph of f(x)=3x-2? 7 6 5 4 ++ + + -7-6-5-4-3-2-1 1 2 3 4 5 6 7 -2 3 -5 6 -7 96 7 5 4 O++ -7-6-5-4-3-2-1 -2 -3 -4 -5 -7 765 432 -7-6-5-4-3-2-1 -2 ++ -3 -4 -5 -6 2 3 4 5 6 7 7 6 2 345 67 -7-6-5-4-3-2-1 2 3 4 5 67 4 -5arrow_forward
- 21. find the mean. and variance of the following: Ⓒ x(t) = Ut +V, and V indepriv. s.t U.VN NL0, 63). X(t) = t² + Ut +V, U and V incepires have N (0,8) Ut ①xt = e UNN (0162) ~ X+ = UCOSTE, UNNL0, 62) SU, Oct ⑤Xt= 7 where U. Vindp.rus +> ½ have NL, 62). ⑥Xn = ΣY, 41, 42, 43, ... Yn vandom sample K=1 Text with mean zen and variance 6arrow_forwardA psychology researcher conducted a Chi-Square Test of Independence to examine whether there is a relationship between college students’ year in school (Freshman, Sophomore, Junior, Senior) and their preferred coping strategy for academic stress (Problem-Focused, Emotion-Focused, Avoidance). The test yielded the following result: image.png Interpret the results of this analysis. In your response, clearly explain: Whether the result is statistically significant and why. What this means about the relationship between year in school and coping strategy. What the researcher should conclude based on these findings.arrow_forwardA 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.arrow_forward
- A school counselor is conducting a research study to examine whether there is a relationship between the number of times teenagers report vaping per week and their academic performance, measured by GPA. The counselor collects data from a sample of high school students. Write the null and alternative hypotheses for this study. Clearly state your hypotheses in terms of the correlation between vaping frequency and academic performance. EditViewInsertFormatToolsTable 12pt Paragrapharrow_forwardPlease help solve the following whilst showing all working out. Is part of exam revision questions but no solution is givenarrow_forwardplease help me with this question with working out thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY