DISCRETE MATHEMATICS WITH APPLICATION (
5th Edition
ISBN: 9780357097717
Author: EPP
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.2, Problem 56ES
To determine
To write a computer algorithm to test whether a relation R defined on a finite set A is transitive or not, where
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please help me with these questions. I am having a hard time understanding what to do. Thank you
3)
roadway
Calculate the overall length of the conduit run sketched below.
2' Radius
8'
122-62
Sin 30° = 6/H
1309
16.4%.
12'
H= 6/s in 30°
Year 2 Exercise Book
Page 4
10
10
10
fx-300MS
S-V.PA
Topic 1
© ©
Q Tue 7 Jan 10:12 pm
myopenmath.com/assess2/?cid=253523&aid=17...
ookmarks
吕
Student Account...
8 Home | Participant... 001st Meeting with y...
E
F
D
c
G
B
H
I
A
J
P
K
L
N
M
Identify the special angles above. Give your answers in degrees.
A: 0
B: 30
C: 45
D: 60
E: 90
>
१
F: 120 0
G:
H:
1: 180 0
J:
K:
L: 240 0
Next-
M: 270 0
0:
ZÖÄ
N: 300 0
Aa
zoom
P:
Question Help: Message instructor
MacBook Air
Ο
O
Σ
>> | All Bookmarks
Chapter 8 Solutions
DISCRETE MATHEMATICS WITH APPLICATION (
Ch. 8.1 - If R is a relation from A to B, xA , and yB , the...Ch. 8.1 - Prob. 2TYCh. 8.1 - Prob. 3TYCh. 8.1 - Prob. 4TYCh. 8.1 - If R is a relation on a set A, the directed graph...Ch. 8.1 - As in Example 8.1.2, the congruence modulo 2...Ch. 8.1 - Prove that for all integers m and n,m-n is even...Ch. 8.1 - The congruence modulo 3 relation, T, is defined...Ch. 8.1 - Define a relation P on Z as follows: For every...Ch. 8.1 - Prob. 5ES
Ch. 8.1 - Let X={a,b,c}. Define a relation J on P(X) as...Ch. 8.1 - Define a relation R on Z as follows: For all...Ch. 8.1 - Prob. 8ESCh. 8.1 - Let A be the set of all strings of 0’s, 1’s, and...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let R be the “less...Ch. 8.1 - Let A={3,4,5} and B={4,5,6} and let S be the...Ch. 8.1 - Prob. 12ESCh. 8.1 - Prob. 13ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Prob. 16ESCh. 8.1 - Prob. 17ESCh. 8.1 - Draw the directed graphs of the relations defined...Ch. 8.1 - Exercises 19-20 refer to unions and intersections...Ch. 8.1 - Prob. 20ESCh. 8.1 - Define relation R and S on R as follows:...Ch. 8.1 - Prob. 22ESCh. 8.1 - Prob. 23ESCh. 8.1 - Prob. 24ESCh. 8.2 - For a relation R on a set A to be reflexive means...Ch. 8.2 - For a relation R on a set A to be symmetric means...Ch. 8.2 - For a relation R on a set A to be transitive means...Ch. 8.2 - Prob. 4TYCh. 8.2 - Prob. 5TYCh. 8.2 - Prob. 6TYCh. 8.2 - Prob. 7TYCh. 8.2 - Prob. 8TYCh. 8.2 - Prob. 9TYCh. 8.2 - Prob. 10TYCh. 8.2 - Prob. 1ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - Prob. 3ESCh. 8.2 - Prob. 4ESCh. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 1-8, a number of relations are defined on the...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9—33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 15ESCh. 8.2 - Prob. 16ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 18ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 20ESCh. 8.2 - Prob. 21ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 24ESCh. 8.2 - In 9-33, determine whether the given is reflexive...Ch. 8.2 - Prob. 26ESCh. 8.2 - Prob. 27ESCh. 8.2 - Prob. 28ESCh. 8.2 - Prob. 29ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - Prob. 31ESCh. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 9-33, determine whether the given relation is...Ch. 8.2 - In 34-36, assume that R is a relation on a et A....Ch. 8.2 - Prob. 35ESCh. 8.2 - Prob. 36ESCh. 8.2 - Prob. 37ESCh. 8.2 - Prob. 38ESCh. 8.2 - Prob. 39ESCh. 8.2 - Prob. 40ESCh. 8.2 - Prob. 41ESCh. 8.2 - In 37-42, assume that R and S are relations on a...Ch. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 44ESCh. 8.2 - Prob. 45ESCh. 8.2 - Prob. 46ESCh. 8.2 - Prob. 47ESCh. 8.2 - In 43-50, the following definitions are used: A...Ch. 8.2 - Prob. 49ESCh. 8.2 - Prob. 50ESCh. 8.2 - Prob. 51ESCh. 8.2 - In 51—53, R, S, and T are relations defined on...Ch. 8.2 - Prob. 53ESCh. 8.2 - Prob. 54ESCh. 8.2 - Prob. 55ESCh. 8.2 - Prob. 56ESCh. 8.3 - For a relation on a set to be an equivalence...Ch. 8.3 - The notation m=n(modd) is...Ch. 8.3 - Prob. 3TYCh. 8.3 - Prob. 4TYCh. 8.3 - Prob. 5TYCh. 8.3 - Prob. 6TYCh. 8.3 - Prob. 1ESCh. 8.3 - Prob. 2ESCh. 8.3 - Prob. 3ESCh. 8.3 - In each of 3—6, the relation R is an equivalence...Ch. 8.3 - Prob. 5ESCh. 8.3 - In each of 3-6, the relation R is an equivalence...Ch. 8.3 - Prob. 7ESCh. 8.3 - Prob. 8ESCh. 8.3 - Prob. 9ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - Prob. 11ESCh. 8.3 - In each of 7-14, relation R is an equivalence...Ch. 8.3 - In each of 7-14, the relation R is an equivalence...Ch. 8.3 - In each of 7—14, the relation R is an equivalence...Ch. 8.3 - Determine which of the following congruence...Ch. 8.3 - Let R be the relation of congruence modulo 3....Ch. 8.3 - Prob. 17ESCh. 8.3 - Prob. 18ESCh. 8.3 - In 19-31, (1) prove that the relation is an...Ch. 8.3 - Prob. 20ESCh. 8.3 - Prob. 21ESCh. 8.3 - Prob. 22ESCh. 8.3 - Prob. 23ESCh. 8.3 - In 19-31. (1) prove that the relation is an...Ch. 8.3 - In 19-31,(1) prove that the relation is an...Ch. 8.3 - Prob. 26ESCh. 8.3 - Prob. 27ESCh. 8.3 - Prob. 28ESCh. 8.3 - Prob. 29ESCh. 8.3 - Prob. 30ESCh. 8.3 - In 19—31, (1) prove that the relation is an...Ch. 8.3 - Prob. 32ESCh. 8.3 - Prob. 33ESCh. 8.3 - Prob. 34ESCh. 8.3 - Prob. 35ESCh. 8.3 - Prob. 36ESCh. 8.3 - Prob. 37ESCh. 8.3 - Prob. 38ESCh. 8.3 - Prob. 39ESCh. 8.3 - Prob. 40ESCh. 8.3 - Prob. 41ESCh. 8.3 - Prob. 42ESCh. 8.3 - Prob. 43ESCh. 8.3 - Let A=Z+Z+ . Define a relation R on A as follows:...Ch. 8.3 - Prob. 45ESCh. 8.3 - Let R be a relation on a set A and suppose R is...Ch. 8.3 - Refer to the quote at the beginning of this...Ch. 8.4 - When letters of the alphabet are encrypted using...Ch. 8.4 - Prob. 2TYCh. 8.4 - Prob. 3TYCh. 8.4 - Prob. 4TYCh. 8.4 - Prob. 5TYCh. 8.4 - Prob. 6TYCh. 8.4 - Prob. 7TYCh. 8.4 - Prob. 8TYCh. 8.4 - Fermat’s little theorem says that if p is any...Ch. 8.4 - Prob. 10TYCh. 8.4 - Prob. 1ESCh. 8.4 - Use the Caesar cipher to encrypt the message AN...Ch. 8.4 - Prob. 3ESCh. 8.4 - Let a=68, b=33, and n=7. Verify that 7|(68-33)....Ch. 8.4 - Prove the transitivity of modular congruence. That...Ch. 8.4 - Prob. 6ESCh. 8.4 - Verify the following statements. 128=2(mod7) and...Ch. 8.4 - Verify the following statements. 45=3 (mod 6) and...Ch. 8.4 - Prob. 9ESCh. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - In 9-11, prove each of the given statements,...Ch. 8.4 - Prove that for every integer n0,10n=1(mod9) . Use...Ch. 8.4 - Prob. 13ESCh. 8.4 - Prob. 14ESCh. 8.4 - Prob. 15ESCh. 8.4 - In 16-18, use the techniques of Example 8.4.4 and...Ch. 8.4 - Prob. 17ESCh. 8.4 - Prob. 18ESCh. 8.4 - Prob. 19ESCh. 8.4 - Prob. 20ESCh. 8.4 - Prob. 21ESCh. 8.4 - In 19-24, use the RSA cipher from Examples 8.4.9...Ch. 8.4 - Prob. 23ESCh. 8.4 - Prob. 24ESCh. 8.4 - Prob. 25ESCh. 8.4 - Prob. 26ESCh. 8.4 - In 26 and 27, use the extended Euclidean algorithm...Ch. 8.4 - Prob. 28ESCh. 8.4 - Prob. 29ESCh. 8.4 - Prob. 30ESCh. 8.4 - Find an inverse for 210 modulo 13. Find appositive...Ch. 8.4 - Find an inverse for 41 modulo 660. Find the least...Ch. 8.4 - Prob. 33ESCh. 8.4 - Prob. 34ESCh. 8.4 - Prob. 35ESCh. 8.4 - In 36,37,39 and 40, use the RSA cipher with public...Ch. 8.4 - Prob. 37ESCh. 8.4 - Find the least positive inverse for 43 modulo 660.Ch. 8.4 - Prob. 39ESCh. 8.4 - Prob. 40ESCh. 8.4 - Prob. 41ESCh. 8.4 - Prob. 42ESCh. 8.4 - Prob. 43ESCh. 8.5 - Prob. 1TYCh. 8.5 - Prob. 2TYCh. 8.5 - Prob. 3TYCh. 8.5 - Prob. 4TYCh. 8.5 - Prob. 5TYCh. 8.5 - Prob. 6TYCh. 8.5 - Prob. 7TYCh. 8.5 - Prob. 8TYCh. 8.5 - Prob. 9TYCh. 8.5 - Prob. 10TYCh. 8.5 - Each of the following is a relation on {0,1,2,3}...Ch. 8.5 - Prob. 2ESCh. 8.5 - Let S be the set of all strings of a’s and b’s....Ch. 8.5 - Prob. 4ESCh. 8.5 - Prob. 5ESCh. 8.5 - Let P be the set of all people who have ever lived...Ch. 8.5 - Prob. 7ESCh. 8.5 - Prob. 8ESCh. 8.5 - Prob. 9ESCh. 8.5 - Suppose R and S are antisymmetric relations on a...Ch. 8.5 - Let A={a,b}, and supposeAhas the partial order...Ch. 8.5 - Prob. 12ESCh. 8.5 - Let A={a,b} . Describe all partial order relations...Ch. 8.5 - Let A={a,b,c}. Describe all partial order...Ch. 8.5 - Prob. 15ESCh. 8.5 - Consider the “divides” relation on each of the...Ch. 8.5 - Prob. 17ESCh. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Let S={0,1} and consider the partial order...Ch. 8.5 - Consider the “divides” relation defined on the set...Ch. 8.5 - Prob. 22ESCh. 8.5 - Prob. 23ESCh. 8.5 - Prob. 24ESCh. 8.5 - Prob. 25ESCh. 8.5 - Prob. 26ESCh. 8.5 - Prob. 27ESCh. 8.5 - Prob. 28ESCh. 8.5 - Prob. 29ESCh. 8.5 - Prob. 30ESCh. 8.5 - Prob. 31ESCh. 8.5 - Prob. 32ESCh. 8.5 - Consider the set A={12,24,48,3,9} ordered by the...Ch. 8.5 - Suppose that R is a partial order relation on a...Ch. 8.5 - Prob. 35ESCh. 8.5 - The set A={2,4,3,6,12,18,24} is partially ordered...Ch. 8.5 - Find a chain of length 2 for the relation defined...Ch. 8.5 - Prob. 38ESCh. 8.5 - Prob. 39ESCh. 8.5 - Prob. 40ESCh. 8.5 - Prob. 41ESCh. 8.5 - Prob. 42ESCh. 8.5 - Prob. 43ESCh. 8.5 - Prob. 44ESCh. 8.5 - Prob. 45ESCh. 8.5 - Prob. 46ESCh. 8.5 - Prob. 47ESCh. 8.5 - Prob. 48ESCh. 8.5 - Prob. 49ESCh. 8.5 - A set S of jobs can be ordered by writing x_y to...Ch. 8.5 - Suppose the tasks described in Example 8.5.12...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The cup on the 9th hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec. Introduce coordinates so that the cup is the origin of an xy-coordinate system and start by writing down the equations of the circle and the linear path of the ball. Provide numerical answers below with two decimal places of accuracy. 50 feet green ball 40 feet 9 cup ball path rough (a) The x-coordinate of the position where the ball enters the green will be (b) The ball will exit the green exactly seconds after it is hit. (c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q: smallest x-coordinate =…arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. P L1 L (a) The line L₁ is tangent to the unit circle at the point (b) The tangent line L₁ has equation: X + (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line 42 has equation: y= x + ).arrow_forwardIntroduce yourself and describe a time when you used data in a personal or professional decision. This could be anything from analyzing sales data on the job to making an informed purchasing decision about a home or car. Describe to Susan how to take a sample of the student population that would not represent the population well. Describe to Susan how to take a sample of the student population that would represent the population well. Finally, describe the relationship of a sample to a population and classify your two samples as random, systematic, cluster, stratified, or convenience.arrow_forward
- Answersarrow_forwardWhat is a solution to a differential equation? We said that a differential equation is an equation that describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential equation, we mean simply a function that satisfies this description. 2. Here is a differential equation which describes an unknown position function s(t): ds dt 318 4t+1, ds (a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate you really do get 4t +1. and check that dt' (b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation? (c) Is s(t)=2t2 + 3t also a solution to this differential equation? ds 1 dt (d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the right side of the equation by multiplying, and then integrate both sides. What do you get? (e) Does this differential equation have a unique solution, or an infinite family of solutions?arrow_forwardthese are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.arrow_forward
- Q1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.arrow_forward************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forwardProve that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "arrow_forward
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY