
Foundations in Microbiology
9th Edition
ISBN: 9780073522609
Author: Kathleen Park Talaro, Barry Chess Instructor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.3, Problem 23CYP
Summary Introduction
To discuss:
The reaction between electrons, H+, and oxygen at the final step of electron transport.
Introduction:
In the terminal step of electron transport chain, electron carriers are reduced during glycolysis and the citric acid cycle to NADH + H+ and FADH2. These carriers then donate electrons and protons to the electron carrier proteins of the electron transport chain. The final electron acceptor is oxygen. Together with oxygen, electrons and protons form molecules of water.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Alleles at the P locus control seed color. Plants which are pp have white seeds, white flowers and no pigment in vegetative parts. Plants which are P_ have black seeds, purple flowers and may have varying degrees of pigment on stems and leaves. Seed color can be assessed, visually, based on if the seed is white or not white
A gene for mold resistance has been reported and we want to determine its inheritance and whether it is linked to P. For the purposes of this exercise, we will assume that resistance is controlled by a single locus M, and M_ plants are resistant and mm plants are susceptible. Resistance can be measured, under greenhouse conditions, 2 weeks after planting, by injecting each seedling with a spore suspension. After two weeks, the seedlings can be rated as resistant or susceptible, based on whether or not tissue is actively sporulating.
For this exercise we will use seed and data from the F10 generation of a recombinant inbred population produced using single seed…
Linkage in common bean
Alleles at the P locus control seed color. Plants which are pp have white seeds, white flowers and no pigment in vegetative parts. Plants which are P_ have black seeds, purple flowers and may have varying degrees of pigment on stems and leaves. Seed color can be assessed, visually, based on if the seed is white or not white
A gene for mold resistance has been reported and we want to determine its inheritance and whether it is linked to P. For the purposes of this exercise, we will assume that resistance is controlled by a single locus M, and M_ plants are resistant and mm plants are susceptible. Resistance can be measured, under greenhouse conditions, 2 weeks after planting, by injecting each seedling with a spore suspension. After two weeks, the seedlings can be rated as resistant or susceptible, based on whether or not tissue is actively sporulating.
For this exercise we will use seed and data from the F10 generation of a recombinant inbred population…
Alleles at the P locus control seed color. Plants which are pp have white seeds, white flowers and no pigment in vegetative parts. Plants which are P_ have black seeds, purple flowers and may have varying degrees of pigment on stems and leaves. Seed color can be assessed, visually, based on if the seed is white or not white
A gene for mold resistance has been reported and we want to determine its inheritance and whether it is linked to P. For the purposes of this exercise, we will assume that resistance is controlled by a single locus M, and M_ plants are resistant and mm plants are susceptible. Resistance can be measured, under greenhouse conditions, 2 weeks after planting, by injecting each seedling with a spore suspension. After two weeks, the seedlings can be rated as resistant or susceptible, based on whether or not tissue is actively sporulating.
For this exercise we will use seed and data from the F10 generation of a recombinant inbred population produced using single seed…
Chapter 8 Solutions
Foundations in Microbiology
Ch. 8.1 - 1. Define metabolism and differentiate its two...Ch. 8.1 - Prob. 2ELOCh. 8.1 - 3. outline the prominent characteristics of...Ch. 8.1 - 4. Explain how enzymes lower the energy required...Ch. 8.1 - 5. Discuss enzyme structure, and interactions...Ch. 8.1 - 6. Describe the types of enzyme functions and...Ch. 8.1 - 7. Summarize key features of enzyme regulation.Ch. 8.1 - 1. Differentiate between catabolism and anabolism...Ch. 8.1 - 2. Describe 10 important biochemical properties of...Ch. 8.1 - 3. Describe the chemistry of enzymes, and explain...
Ch. 8.1 - 4. Show diagrammatically the interaction of...Ch. 8.1 - 5. Differentiate among the chemical composition...Ch. 8.1 - 6. Summarize the direct and indirect controls that...Ch. 8.2 - Prob. 8ELOCh. 8.2 - 9. Describe biological oxidation-reduction and...Ch. 8.2 - Prob. 10ELOCh. 8.2 - 7. Explain how oxidation of a substrate proceeds...Ch. 8.2 - 8. Refer to the blue redox equation for...Ch. 8.2 - 9. In the following redox pairs, which compound is...Ch. 8.2 - 10. a. Describe the roles played by ATP and NAD+...Ch. 8.2 - Prob. 11CYPCh. 8.2 - 12. What is meant by the concept of the “final...Ch. 8.3 - 11. Relate the main points of bioenergetics and...Ch. 8.3 - 12. Describe the main catabolic pathways and their...Ch. 8.3 - 13. Define glycolysis and explain its input and...Ch. 8.3 - Prob. 14ELOCh. 8.3 - 15. Describe the components of the respiratory...Ch. 8.3 - 16. Explain the chemiosmotic mechanism of ATP...Ch. 8.3 - 17. Summarize the results of aerobic respiration.Ch. 8.3 - Prob. 18ELOCh. 8.3 - 13. Describe the basic energy strategies of...Ch. 8.3 - Prob. 14CYPCh. 8.3 - 15. Outline the basic steps in glycolysis,...Ch. 8.3 - Prob. 16CYPCh. 8.3 - 17. What is the fate of NADH in a fermentative...Ch. 8.3 - Prob. 18CYPCh. 8.3 - 18. Summarize the chemiosmotic theory of ATP...Ch. 8.3 - 19. Haw many ATPs could theoretically be formed...Ch. 8.3 - 21. Name the sources of oxygen in bacteria that...Ch. 8.3 - 22. What are the final electron acceptors in...Ch. 8.3 - Prob. 23CYPCh. 8.4 - 19. Explain what is meant by the term fermentation...Ch. 8.4 - 20. Describe some of the processes of fermentation...Ch. 8.4 - 24. What adaptive advantages does a fermentative...Ch. 8.4 - 25. Describe three patterns of fermentation...Ch. 8.5 - 21. Explain how cells perform anabolic functions...Ch. 8.5 - 22. Identify major pathways where molecules can be...Ch. 8.5 - 23. Briefly describe several mechanisms in...Ch. 8.5 - 26. What is meant by amphibolism, and what are its...Ch. 8.5 - Prob. 27CYPCh. 8.5 - 28. Which macromolecules are synthesized by...Ch. 8.6 - 24. Outline the general reactions of...Ch. 8.6 - 25. Describe the pigment systems and how they...Ch. 8.6 - 26. Describe the main events in the...Ch. 8.6 - 27. Describe the main events in the...Ch. 8.6 - 29. Indicate whether each of the following is...Ch. 8.6 - Prob. 30CYPCh. 8.6 - 31. What are the functions of chlorophyll and the...Ch. 8.6 - Prob. 32CYPCh. 8.6 - 33. Compare oxygenic with nonoxygenic...Ch. 8.L1 - 1. ______ is another term for biosynthesis. a....Ch. 8.L1 - Prob. 2MCQCh. 8.L1 - 3. An enzyme ___________ the activation energy...Ch. 8.L1 - 4. An enzyme a. becomes part of the final products...Ch. 8.L1 - 5. An apoenzyme is where the ___________ is...Ch. 8.L1 - 6. Many coenzymes contain a. metals b. vitamins c....Ch. 8.L1 - 7. To digest cellulose in its environment, a...Ch. 8.L1 - 8. Energy in biological systems is primarily a....Ch. 8.L1 - 9. Energy is carried from catabolic to anabolic...Ch. 8.L1 - 10. Exergonic reactions a. release potential...Ch. 8.L1 - Prob. 11MCQCh. 8.L1 - Prob. 12MCQCh. 8.L1 - Prob. 13MCQCh. 8.L1 - 14. Fermentation of a glucose molecule has the...Ch. 8.L1 - Prob. 15MCQCh. 8.L1 - Prob. 16MCQCh. 8.L1 - 17. The FADH2 formed during the Krebs cycle enters...Ch. 8.L1 - 18. The proton motive force is the result of a....Ch. 8.L1 - Prob. 19MCQCh. 8.L1 - Prob. 20MCQCh. 8.L1 - 21. The oxygen produced by photosynthesis comes...Ch. 8.L1 - Prob. 22MCQCh. 8.L1 - Prob. 1CSRCh. 8.L1 - Prob. 2CSRCh. 8.L1 - Prob. 3CSRCh. 8.L1 - Prob. 1WCCh. 8.L1 - 2. Give the general name of the enzyme a. converts...Ch. 8.L1 - 3. Explain what is unique about the actions of ATP...Ch. 8.L1 - Prob. 4WCCh. 8.L1 - 5. Describe four requirements required for...Ch. 8.L1 - Prob. 6WCCh. 8.L1 - Prob. 7WCCh. 8.L1 - Prob. 8WCCh. 8.L2 - 1. Use the following graph to diagram the...Ch. 8.L2 - 2. Explain what is meant by the “biochemical...Ch. 8.L2 - 3. Explain how it is possible for certain microbes...Ch. 8.L2 - 4. Suggest the advantages of having metabolic...Ch. 8.L2 - 5. Two steps in glycolysis are catalyzed by...Ch. 8.L2 - Prob. 6CTCh. 8.L2 - 6. Beer production requires an early period of...Ch. 8.L2 - 8. At which site in the mitochondrion and...Ch. 8.L2 - Prob. 9CTCh. 8.L2 - Prob. 10CTCh. 8.L2 - 1. From chapter 7. figure 7.11 (reproduced below)....Ch. 8.L2 - 2. Look at the two figure parts (a) and (b) from...
Knowledge Booster
Similar questions
- can you help? I think its B but not surearrow_forwardSkip to main content close Homework Help is Here – Start Your Trial Now! arrow_forward search SEARCH ASK Human Anatomy & Physiology (11th Edition)BUY Human Anatomy & Physiology (11th Edition) 11th Edition ISBN: 9780134580999 Author: Elaine N. Marieb, Katja N. Hoehn Publisher: PEARSON 1 The Human Body: An Orientation expand_moreChapter 1 : The Human Body: An Orientation Chapter Questions expand_moreSection: Chapter Questions Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,... format_list_bulletedProblem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,... See similar textbooks Bartleby Related Questions Icon Related questions Bartleby Expand Icon bartleby Concept explainers bartleby Question Draw a replication bubble with two replication forks.blue lines are DNA single strands and red lines are RNA single strands.indicate all 3' and 5’ ends on all DNA single…arrow_forwardProvide an answerarrow_forward
- Question 4 1 pts Which of the following would be most helpful for demonstrating alternative splicing for a new organism? ○ its proteome and its transcriptome only its transcriptome only its genome its proteome and its genomearrow_forwardIf the metabolic scenario stated with 100 mM of a sucrose solution, how much ATP would be made then during fermentation?arrow_forwardWhat is agricuarrow_forward
- When using the concept of "a calorie in is equal to a calorie out" how important is the quality of the calories?arrow_forwardWhat did the Cre-lox system used in the Kikuchi et al. 2010 heart regeneration experiment allow researchers to investigate? What was the purpose of the cmlc2 promoter? What is CreER and why was it used in this experiment? If constitutively active Cre was driven by the cmlc2 promoter, rather than an inducible CreER system, what color would you expect new cardiomyocytes in the regenerated area to be no matter what? Why?arrow_forwardWhat kind of organ size regulation is occurring when you graft multiple organs into a mouse and the graft weight stays the same?arrow_forward
- What is the concept "calories consumed must equal calories burned" in regrads to nutrition?arrow_forwardYou intend to insert patched dominant negative DNA into the left half of the neural tube of a chick. 1) Which side of the neural tube would you put the positive electrode to ensure that the DNA ends up on the left side? 2) What would be the internal (within the embryo) control for this experiment? 3) How can you be sure that the electroporation method itself is not impacting the embryo? 4) What would you do to ensure that the electroporation is working? How can you tell?arrow_forwardDescribe a method to document the diffusion path and gradient of Sonic Hedgehog through the chicken embryo. If modifying the protein, what is one thing you have to consider in regards to maintaining the protein’s function?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningAnatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax CollegeBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning
- Biology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College

Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning

Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College

Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning

Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781305073951
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning

Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax

Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College