
Foundations in Microbiology
9th Edition
ISBN: 9780073522609
Author: Kathleen Park Talaro, Barry Chess Instructor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.3, Problem 18CYP
Summary Introduction
To discuss:
Why does the total of ATPs generated differ between bacteria and eukaryotes.
Introduction:
Carriers in the electron transport chain like NADH coenzyme Q reductase etc accepts electrons from the Krebs cycle electron carrier nicotinamide adenine dinucleotide (NADH), and passes them to coenzyme Q (ubiquinone) which also receives electrons from complex II (succinate dehydrogenase ). Depending upon the types and stages involved in the electron transport chain by these carriers, there is a difference in the consumption of ATP between prokaryotes and eukaryotes.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
What did the Cre-lox system used in the Kikuchi et al. 2010 heart regeneration experiment allow researchers to investigate?
What was the purpose of the cmlc2 promoter?
What is CreER and why was it used in this experiment?
If constitutively active Cre was driven by the cmlc2 promoter, rather than an inducible CreER system, what color would you expect new cardiomyocytes in the regenerated area to be no matter what? Why?
What kind of organ size regulation is occurring when you graft multiple organs into a mouse and the graft weight stays the same?
What is the concept "calories consumed must equal calories burned" in regrads to nutrition?
Chapter 8 Solutions
Foundations in Microbiology
Ch. 8.1 - 1. Define metabolism and differentiate its two...Ch. 8.1 - Prob. 2ELOCh. 8.1 - 3. outline the prominent characteristics of...Ch. 8.1 - 4. Explain how enzymes lower the energy required...Ch. 8.1 - 5. Discuss enzyme structure, and interactions...Ch. 8.1 - 6. Describe the types of enzyme functions and...Ch. 8.1 - 7. Summarize key features of enzyme regulation.Ch. 8.1 - 1. Differentiate between catabolism and anabolism...Ch. 8.1 - 2. Describe 10 important biochemical properties of...Ch. 8.1 - 3. Describe the chemistry of enzymes, and explain...
Ch. 8.1 - 4. Show diagrammatically the interaction of...Ch. 8.1 - 5. Differentiate among the chemical composition...Ch. 8.1 - 6. Summarize the direct and indirect controls that...Ch. 8.2 - Prob. 8ELOCh. 8.2 - 9. Describe biological oxidation-reduction and...Ch. 8.2 - Prob. 10ELOCh. 8.2 - 7. Explain how oxidation of a substrate proceeds...Ch. 8.2 - 8. Refer to the blue redox equation for...Ch. 8.2 - 9. In the following redox pairs, which compound is...Ch. 8.2 - 10. a. Describe the roles played by ATP and NAD+...Ch. 8.2 - Prob. 11CYPCh. 8.2 - 12. What is meant by the concept of the “final...Ch. 8.3 - 11. Relate the main points of bioenergetics and...Ch. 8.3 - 12. Describe the main catabolic pathways and their...Ch. 8.3 - 13. Define glycolysis and explain its input and...Ch. 8.3 - Prob. 14ELOCh. 8.3 - 15. Describe the components of the respiratory...Ch. 8.3 - 16. Explain the chemiosmotic mechanism of ATP...Ch. 8.3 - 17. Summarize the results of aerobic respiration.Ch. 8.3 - Prob. 18ELOCh. 8.3 - 13. Describe the basic energy strategies of...Ch. 8.3 - Prob. 14CYPCh. 8.3 - 15. Outline the basic steps in glycolysis,...Ch. 8.3 - Prob. 16CYPCh. 8.3 - 17. What is the fate of NADH in a fermentative...Ch. 8.3 - Prob. 18CYPCh. 8.3 - 18. Summarize the chemiosmotic theory of ATP...Ch. 8.3 - 19. Haw many ATPs could theoretically be formed...Ch. 8.3 - 21. Name the sources of oxygen in bacteria that...Ch. 8.3 - 22. What are the final electron acceptors in...Ch. 8.3 - Prob. 23CYPCh. 8.4 - 19. Explain what is meant by the term fermentation...Ch. 8.4 - 20. Describe some of the processes of fermentation...Ch. 8.4 - 24. What adaptive advantages does a fermentative...Ch. 8.4 - 25. Describe three patterns of fermentation...Ch. 8.5 - 21. Explain how cells perform anabolic functions...Ch. 8.5 - 22. Identify major pathways where molecules can be...Ch. 8.5 - 23. Briefly describe several mechanisms in...Ch. 8.5 - 26. What is meant by amphibolism, and what are its...Ch. 8.5 - Prob. 27CYPCh. 8.5 - 28. Which macromolecules are synthesized by...Ch. 8.6 - 24. Outline the general reactions of...Ch. 8.6 - 25. Describe the pigment systems and how they...Ch. 8.6 - 26. Describe the main events in the...Ch. 8.6 - 27. Describe the main events in the...Ch. 8.6 - 29. Indicate whether each of the following is...Ch. 8.6 - Prob. 30CYPCh. 8.6 - 31. What are the functions of chlorophyll and the...Ch. 8.6 - Prob. 32CYPCh. 8.6 - 33. Compare oxygenic with nonoxygenic...Ch. 8.L1 - 1. ______ is another term for biosynthesis. a....Ch. 8.L1 - Prob. 2MCQCh. 8.L1 - 3. An enzyme ___________ the activation energy...Ch. 8.L1 - 4. An enzyme a. becomes part of the final products...Ch. 8.L1 - 5. An apoenzyme is where the ___________ is...Ch. 8.L1 - 6. Many coenzymes contain a. metals b. vitamins c....Ch. 8.L1 - 7. To digest cellulose in its environment, a...Ch. 8.L1 - 8. Energy in biological systems is primarily a....Ch. 8.L1 - 9. Energy is carried from catabolic to anabolic...Ch. 8.L1 - 10. Exergonic reactions a. release potential...Ch. 8.L1 - Prob. 11MCQCh. 8.L1 - Prob. 12MCQCh. 8.L1 - Prob. 13MCQCh. 8.L1 - 14. Fermentation of a glucose molecule has the...Ch. 8.L1 - Prob. 15MCQCh. 8.L1 - Prob. 16MCQCh. 8.L1 - 17. The FADH2 formed during the Krebs cycle enters...Ch. 8.L1 - 18. The proton motive force is the result of a....Ch. 8.L1 - Prob. 19MCQCh. 8.L1 - Prob. 20MCQCh. 8.L1 - 21. The oxygen produced by photosynthesis comes...Ch. 8.L1 - Prob. 22MCQCh. 8.L1 - Prob. 1CSRCh. 8.L1 - Prob. 2CSRCh. 8.L1 - Prob. 3CSRCh. 8.L1 - Prob. 1WCCh. 8.L1 - 2. Give the general name of the enzyme a. converts...Ch. 8.L1 - 3. Explain what is unique about the actions of ATP...Ch. 8.L1 - Prob. 4WCCh. 8.L1 - 5. Describe four requirements required for...Ch. 8.L1 - Prob. 6WCCh. 8.L1 - Prob. 7WCCh. 8.L1 - Prob. 8WCCh. 8.L2 - 1. Use the following graph to diagram the...Ch. 8.L2 - 2. Explain what is meant by the “biochemical...Ch. 8.L2 - 3. Explain how it is possible for certain microbes...Ch. 8.L2 - 4. Suggest the advantages of having metabolic...Ch. 8.L2 - 5. Two steps in glycolysis are catalyzed by...Ch. 8.L2 - Prob. 6CTCh. 8.L2 - 6. Beer production requires an early period of...Ch. 8.L2 - 8. At which site in the mitochondrion and...Ch. 8.L2 - Prob. 9CTCh. 8.L2 - Prob. 10CTCh. 8.L2 - 1. From chapter 7. figure 7.11 (reproduced below)....Ch. 8.L2 - 2. Look at the two figure parts (a) and (b) from...
Knowledge Booster
Similar questions
- You intend to insert patched dominant negative DNA into the left half of the neural tube of a chick. 1) Which side of the neural tube would you put the positive electrode to ensure that the DNA ends up on the left side? 2) What would be the internal (within the embryo) control for this experiment? 3) How can you be sure that the electroporation method itself is not impacting the embryo? 4) What would you do to ensure that the electroporation is working? How can you tell?arrow_forwardDescribe a method to document the diffusion path and gradient of Sonic Hedgehog through the chicken embryo. If modifying the protein, what is one thing you have to consider in regards to maintaining the protein’s function?arrow_forwardThe following table is from Kumar et. al. Highly Selective Dopamine D3 Receptor (DR) Antagonists and Partial Agonists Based on Eticlopride and the D3R Crystal Structure: New Leads for Opioid Dependence Treatment. J. Med Chem 2016.arrow_forward
- The following figure is from Caterina et al. The capsaicin receptor: a heat activated ion channel in the pain pathway. Nature, 1997. Black boxes indicate capsaicin, white circles indicate resinferatoxin. You are a chef in a fancy new science-themed restaurant. You have a recipe that calls for 1 teaspoon of resinferatoxin, but you feel uncomfortable serving foods with "toxins" in them. How much capsaicin could you substitute instead?arrow_forwardWhat protein is necessary for packaging acetylcholine into synaptic vesicles?arrow_forward1. Match each vocabulary term to its best descriptor A. affinity B. efficacy C. inert D. mimic E. how drugs move through body F. how drugs bind Kd Bmax Agonist Antagonist Pharmacokinetics Pharmacodynamicsarrow_forward
- 50 mg dose of a drug is given orally to a patient. The bioavailability of the drug is 0.2. What is the volume of distribution of the drug if the plasma concentration is 1 mg/L? Be sure to provide units.arrow_forwardDetermine Kd and Bmax from the following Scatchard plot. Make sure to include units.arrow_forwardChoose a catecholamine neurotransmitter and describe/draw the components of the synapse important for its signaling including synthesis, packaging into vesicles, receptors, transporters/degradative enzymes. Describe 2 drugs that can act on this system.arrow_forward
- The following figure is from Caterina et al. The capsaicin receptor: a heat activated ion channel in the pain pathway. Nature, 1997. Black boxes indicate capsaicin, white circles indicate resinferatoxin. a) Which has a higher potency? b) Which is has a higher efficacy? c) What is the approximate Kd of capsaicin in uM? (you can round to the nearest power of 10)arrow_forwardWhat is the rate-limiting-step for serotonin synthesis?arrow_forwardWhat enzyme is necessary for synthesis of all of the monoamines?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Anatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax CollegeBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781337408332Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning

Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College

Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning

Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax

Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning

Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781305073951
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning

Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781337408332
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning