
Foundations in Microbiology
9th Edition
ISBN: 9780073522609
Author: Kathleen Park Talaro, Barry Chess Instructor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.1, Problem 2ELO
Summary Introduction
To determine:
The basic functions of enzymes in cells.
Introduction:
Enzymes are a special class of proteins. They are produced by the organisms, mainly to catalyze the various biochemical reactions that take place in the cells.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
8. Aerobic respiration of a 5 mM solution of tripeptide that is composed of the following three amino acids;
alanine, leucine and isoleucine. Alanine breaks down to pyruvate, leucine breaks down to Acetyl-CoA and
isoleucine breaks down to succinyl-CoA.
Alanine
NADH
FADH2
OP ATP
SLP ATP
Total ATP
Leucine
Isoleucine
Totals
Show your work using dimensional analysis here:
4
9. Aerobic respiration of one lipid molecule. The lipid is composed of one glycerol molecule connected to two
fatty acid tails. One fatty acid is 12 carbons long and the other fatty acid is 18 carbons long in the figure
below. Use the information below to determine how much ATP will be produced from the glycerol part of
the lipid. Then, in part B, determine how much ATP is produced from the 2 fatty acids of the lipid. Finally
put the NADH and ATP yields together from the glycerol and fatty acids (part A and B) to determine your
total number of ATP produced per lipid. Assume no other carbon source is available.
fatty acids
glycerol
18 carbons
12 carbons
0=
influences of environment on the phenotype.
Chapter 8 Solutions
Foundations in Microbiology
Ch. 8.1 - 1. Define metabolism and differentiate its two...Ch. 8.1 - Prob. 2ELOCh. 8.1 - 3. outline the prominent characteristics of...Ch. 8.1 - 4. Explain how enzymes lower the energy required...Ch. 8.1 - 5. Discuss enzyme structure, and interactions...Ch. 8.1 - 6. Describe the types of enzyme functions and...Ch. 8.1 - 7. Summarize key features of enzyme regulation.Ch. 8.1 - 1. Differentiate between catabolism and anabolism...Ch. 8.1 - 2. Describe 10 important biochemical properties of...Ch. 8.1 - 3. Describe the chemistry of enzymes, and explain...
Ch. 8.1 - 4. Show diagrammatically the interaction of...Ch. 8.1 - 5. Differentiate among the chemical composition...Ch. 8.1 - 6. Summarize the direct and indirect controls that...Ch. 8.2 - Prob. 8ELOCh. 8.2 - 9. Describe biological oxidation-reduction and...Ch. 8.2 - Prob. 10ELOCh. 8.2 - 7. Explain how oxidation of a substrate proceeds...Ch. 8.2 - 8. Refer to the blue redox equation for...Ch. 8.2 - 9. In the following redox pairs, which compound is...Ch. 8.2 - 10. a. Describe the roles played by ATP and NAD+...Ch. 8.2 - Prob. 11CYPCh. 8.2 - 12. What is meant by the concept of the “final...Ch. 8.3 - 11. Relate the main points of bioenergetics and...Ch. 8.3 - 12. Describe the main catabolic pathways and their...Ch. 8.3 - 13. Define glycolysis and explain its input and...Ch. 8.3 - Prob. 14ELOCh. 8.3 - 15. Describe the components of the respiratory...Ch. 8.3 - 16. Explain the chemiosmotic mechanism of ATP...Ch. 8.3 - 17. Summarize the results of aerobic respiration.Ch. 8.3 - Prob. 18ELOCh. 8.3 - 13. Describe the basic energy strategies of...Ch. 8.3 - Prob. 14CYPCh. 8.3 - 15. Outline the basic steps in glycolysis,...Ch. 8.3 - Prob. 16CYPCh. 8.3 - 17. What is the fate of NADH in a fermentative...Ch. 8.3 - Prob. 18CYPCh. 8.3 - 18. Summarize the chemiosmotic theory of ATP...Ch. 8.3 - 19. Haw many ATPs could theoretically be formed...Ch. 8.3 - 21. Name the sources of oxygen in bacteria that...Ch. 8.3 - 22. What are the final electron acceptors in...Ch. 8.3 - Prob. 23CYPCh. 8.4 - 19. Explain what is meant by the term fermentation...Ch. 8.4 - 20. Describe some of the processes of fermentation...Ch. 8.4 - 24. What adaptive advantages does a fermentative...Ch. 8.4 - 25. Describe three patterns of fermentation...Ch. 8.5 - 21. Explain how cells perform anabolic functions...Ch. 8.5 - 22. Identify major pathways where molecules can be...Ch. 8.5 - 23. Briefly describe several mechanisms in...Ch. 8.5 - 26. What is meant by amphibolism, and what are its...Ch. 8.5 - Prob. 27CYPCh. 8.5 - 28. Which macromolecules are synthesized by...Ch. 8.6 - 24. Outline the general reactions of...Ch. 8.6 - 25. Describe the pigment systems and how they...Ch. 8.6 - 26. Describe the main events in the...Ch. 8.6 - 27. Describe the main events in the...Ch. 8.6 - 29. Indicate whether each of the following is...Ch. 8.6 - Prob. 30CYPCh. 8.6 - 31. What are the functions of chlorophyll and the...Ch. 8.6 - Prob. 32CYPCh. 8.6 - 33. Compare oxygenic with nonoxygenic...Ch. 8.L1 - 1. ______ is another term for biosynthesis. a....Ch. 8.L1 - Prob. 2MCQCh. 8.L1 - 3. An enzyme ___________ the activation energy...Ch. 8.L1 - 4. An enzyme a. becomes part of the final products...Ch. 8.L1 - 5. An apoenzyme is where the ___________ is...Ch. 8.L1 - 6. Many coenzymes contain a. metals b. vitamins c....Ch. 8.L1 - 7. To digest cellulose in its environment, a...Ch. 8.L1 - 8. Energy in biological systems is primarily a....Ch. 8.L1 - 9. Energy is carried from catabolic to anabolic...Ch. 8.L1 - 10. Exergonic reactions a. release potential...Ch. 8.L1 - Prob. 11MCQCh. 8.L1 - Prob. 12MCQCh. 8.L1 - Prob. 13MCQCh. 8.L1 - 14. Fermentation of a glucose molecule has the...Ch. 8.L1 - Prob. 15MCQCh. 8.L1 - Prob. 16MCQCh. 8.L1 - 17. The FADH2 formed during the Krebs cycle enters...Ch. 8.L1 - 18. The proton motive force is the result of a....Ch. 8.L1 - Prob. 19MCQCh. 8.L1 - Prob. 20MCQCh. 8.L1 - 21. The oxygen produced by photosynthesis comes...Ch. 8.L1 - Prob. 22MCQCh. 8.L1 - Prob. 1CSRCh. 8.L1 - Prob. 2CSRCh. 8.L1 - Prob. 3CSRCh. 8.L1 - Prob. 1WCCh. 8.L1 - 2. Give the general name of the enzyme a. converts...Ch. 8.L1 - 3. Explain what is unique about the actions of ATP...Ch. 8.L1 - Prob. 4WCCh. 8.L1 - 5. Describe four requirements required for...Ch. 8.L1 - Prob. 6WCCh. 8.L1 - Prob. 7WCCh. 8.L1 - Prob. 8WCCh. 8.L2 - 1. Use the following graph to diagram the...Ch. 8.L2 - 2. Explain what is meant by the “biochemical...Ch. 8.L2 - 3. Explain how it is possible for certain microbes...Ch. 8.L2 - 4. Suggest the advantages of having metabolic...Ch. 8.L2 - 5. Two steps in glycolysis are catalyzed by...Ch. 8.L2 - Prob. 6CTCh. 8.L2 - 6. Beer production requires an early period of...Ch. 8.L2 - 8. At which site in the mitochondrion and...Ch. 8.L2 - Prob. 9CTCh. 8.L2 - Prob. 10CTCh. 8.L2 - 1. From chapter 7. figure 7.11 (reproduced below)....Ch. 8.L2 - 2. Look at the two figure parts (a) and (b) from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- What is the difference between codominance and phenotypic plasticity?arrow_forwardExplain the differences between polygeny and pleiotropy,arrow_forwardIf using animals in medical experiments could save human lives, is it ethical to do so? In your answer, apply at least one ethical theory in support of your position.arrow_forward
- You aim to test the hypothesis that the Tbx4 and Tbx5 genes inhibit each other's expression during limb development. With access to chicken embryos and viruses capable of overexpressing Tbx4 and Tbx5, describe an experiment to investigate whether these genes suppress each other's expression in the limb buds. What results would you expect if they do repress each other? What results would you expect if they do not repress each other?arrow_forwardYou decide to delete Fgf4 and Fgf8 specifically in the limb bud. Explain why you would not knock out these genes in the entire embryo instead.arrow_forwardYou implant an FGF10-coated bead into the anterior flank of a chicken embryo, directly below the level of the wing bud. What is the phenotype of the resulting ectopic limb? Briefly describe the expected expression domains of 1) Shh, 2) Tbx4, and 3) Tbx5 in the resulting ectopic limb bud.arrow_forward
- Design a grafting experiment to determine if limb mesoderm determines forelimb / hindlimb identity. Include the experiment, a control, and an interpretation in your answer.arrow_forwardThe Snapdragon is a popular garden flower that comes in a variety of colours, including red, yellow, and orange. The genotypes and associated phenotypes for some of these flowers are as follows: aabb: yellow AABB, AABb, AaBb, and AaBB: red AAbb and Aabb: orange aaBB: yellow aaBb: ? Based on this information, what would the phenotype of a Snapdragon with the genotype aaBb be and why? Question 21 options: orange because A is epistatic to B yellow because A is epistatic to B red because B is epistatic to A orange because B is epistatic to A red because A is epistatic to B yellow because B is epistatic to Aarrow_forwardA sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forward
- A sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardWith reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forwardWith reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781337408332Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Anatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax CollegeHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning

Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning

Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax

Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781337408332
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning

Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College

Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning

Biology: The Unity and Diversity of Life (MindTap...
Biology
ISBN:9781305073951
Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Enzyme Kinetics; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=FXWZr3mscUo;License: Standard Youtube License