
Concept explainers
a)
Interpretation:
- The given substituents has to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
b)
Interpretation:
The given substituents to be predicted
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
c)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
d)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
e)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
f)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
Pearson eText Organic Chemistry -- Instant Access (Pearson+)
- One liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forwardHow does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forwardDraw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forward
- Benzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forwardDraw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forward
- pls helparrow_forwardpls helparrow_forward35) Complete the following equation by drawing the line the structure of the products that are formed. Please note that in some cases more than one product is possible. You must draw all possible products to recive full marks! a. ethanol + 2-propanol + H2SO4 → b. OH conc. H2SO4 CH2 H3C CH + K2Cr2O7 C. d. H3C A pressure CH3 + H2 CH Pt catalystarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning

