In Problems 87 - 90 , several experiments are simulated using the random number feature on a graphing calculator. For example, the roll of a fair die can be simulated by selecting a random integer from, and 50 rolls of a fair die by selecting 50 random integers from 1 to 6 (see Fig. A for Problem 87 and your user's manual). A) Explain how a graphing calculator can be used to simulate 500 tosses of a coin. (B) Carry out the simulation and find the empirical probabilities of the two outcomes. (C) What is the probability of each outcome under the equally likely assumption?
In Problems 87 - 90 , several experiments are simulated using the random number feature on a graphing calculator. For example, the roll of a fair die can be simulated by selecting a random integer from, and 50 rolls of a fair die by selecting 50 random integers from 1 to 6 (see Fig. A for Problem 87 and your user's manual). A) Explain how a graphing calculator can be used to simulate 500 tosses of a coin. (B) Carry out the simulation and find the empirical probabilities of the two outcomes. (C) What is the probability of each outcome under the equally likely assumption?
Solution Summary: The author explains the procedure of a graphing calculator to simulate 500 tosses.
In Problems
87
-
90
, several experiments are simulated using the random number feature on a graphing calculator. For example, the roll of a fair die can be simulated by selecting a random integer from, and
50
rolls of a fair die by selecting
50
random integers from
1
to
6
(see Fig. A for Problem
87
and your user's manual).
A) Explain how a graphing calculator can be used to simulate
500
tosses of a coin.
(B) Carry out the simulation and find the empirical probabilities of the two outcomes.
(C) What is the probability of each outcome under the equally likely assumption?
(4) (8 points)
(a) (2 points) Write down a normal vector n for the plane P given by the equation
x+2y+z+4=0.
(b) (4 points) Find two vectors v, w in the plane P that are not parallel.
(c) (2 points) Using your answers to part (b), write down a parametrization r: R² —
R3 of the plane P.
(2) (8 points) Determine normal vectors for the planes given by the equations x-y+2z = 3
and 2x + z = 3. Then determine a parametrization of the intersection line of the two
planes.
(3) (6 points)
(a) (4 points) Find all vectors u in the yz-plane that have magnitude [u
also are at a 45° angle with the vector j = (0, 1,0).
= 1 and
(b) (2 points) Using the vector u from part (a) that is counterclockwise to j, find an
equation of the plane through (0,0,0) that has u as its normal.
Chapter 8 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License