Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.1, Problem 8.7P
A boiler is constructed of 8-mm-thick steel plates that are fastened together at their ends using a butt joint consisting of two 8-mm cover plates and rivets having a diameter of 10 mm and spaced 50 mm apart as shown. If the steam pressure in the boiler is 1.35 MPa, determine (a) the circumferential stress in the boiler's plate away from the seam, (b) the circumferential stress in the outer cover plate along the rivet line a–a, and (c) the shear stress in the rivets.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spherical gas tank is fabricated by bolting together two thin-walled
hemispherical shells with an inner diameter of 8 m. The gas is
pressurized to 2.0 MPa. The shells have an allowable normal stress
of 150 MPa, and the 25 mm-diameter bolts have an allowable normal
stress of 250 MPa.
(a) Determine the minimum thickness of the walls of the tank to the
nearest mm.
(b) Determine the minimum number of bolts to connect the hemispheres.
A boiler with an outside diameter of 300 mm, length of 1000 mm and a wall thickness of
10 mm is carrying steam at 4.5 MPa. A seal is inserted between the flange at one end of
the boiler and a flat plate is used to cap the end.
Determine the following:
How many 40-mm-diameter bolts must be used to hold the cap on if the allowable stress
3.1
in the bolts is 80 MPa, of which 50 MPa is the initial stress?
3.2
What circumferential stress is developed in the boiler?
3.
A pressure vessel of 250-mm inner diameter and 6-mm wall thick-
ness is fabricated from a 1.2-m section of spirally welded pipe AB
and is equipped with two rigid end plates. The gage pressure inside
the vessel is 2 MPa, and 45-kN centric axial forces P and P' are
applied to the end plates. Determine (a) the normal stress perpen-
dicular to the weld, (b) the shearing stress parallel to the weld.
P'
A
1.2 m
35°
o
B
Chapter 8 Solutions
Mechanics of Materials (10th Edition)
Ch. 8.1 - If it is subjected to an internal pressure of p =...Ch. 8.1 - If it is subjected to an internal pressure of p =...Ch. 8.1 - The thin-walled cylinder can be supported in one...Ch. 8.1 - If the inner diameter of the tank is 22 in., and...Ch. 8.1 - Air pressure in the cylinder is increased by...Ch. 8.1 - Determine the maximum force P that can be exerted...Ch. 8.1 - A boiler is constructed of 8-mm-thick steel plates...Ch. 8.1 - 88. The steel water pipe has an inner diameter of...Ch. 8.1 - The steel water pipe has an inner diameter of 12...Ch. 8.1 - The A-36-steel band is 2 in. wide and is secured...
Ch. 8.1 - The gas pipe line is supported every 20 ft by...Ch. 8.1 - A pressure-vessel head is fabricated by welding...Ch. 8.1 - An A-36-steel hoop has an inner diameter of 23.99...Ch. 8.1 - The ring, having the dimensions shown, is placed...Ch. 8.1 - The inner ring A has an inner radius r1 and outer...Ch. 8.1 - Two hemispheres having an inner radius of 2 ft and...Ch. 8.1 - In order to increase the strength of the pressure...Ch. 8.2 - Show the results on the left segment.Ch. 8.2 - Show the stress that each of these loads produce...Ch. 8.2 - Fundamental Problems F81. Determine the normal...Ch. 8.2 - Show the results in a differential element at the...Ch. 8.2 - Determine the state of stress at point A on the...Ch. 8.2 - Determine the magnitude of the load P that will...Ch. 8.2 - Determine the state of stress at point B. Show the...Ch. 8.2 - Determine the state of stress at point A on the...Ch. 8.2 - Determine the state of stress at point A on the...Ch. 8.2 - Show the results in a differential element at the...Ch. 8.2 - Determine the shortest distance d to the edge of...Ch. 8.2 - The plate has a thickness of 20 mm and P acts...Ch. 8.2 - Plot the distribution of normal stress acting...Ch. 8.2 - Also, plot the normal-stress distribution over the...Ch. 8.2 - If the allowable normal stress for the steel is...Ch. 8.2 - If the applied force P = 1.50 kip, determine the...Ch. 8.2 - Determine the maximum normal stress on the cross...Ch. 8.2 - If the wood has an allowable normal stress of...Ch. 8.2 - Determine the maximum normal stress along section...Ch. 8.2 - Sketch the stress distribution along section aa of...Ch. 8.2 - Sketch the normal-stress distribution acting over...Ch. 8.2 - Determine the state of stress at points A and B,...Ch. 8.2 - If the force of 100 N is applied to the handles,...Ch. 8.2 - Determine the stress components at point A on the...Ch. 8.2 - Determine the stress components at point B on the...Ch. 8.2 - Determine the normal stress developed at points A...Ch. 8.2 - Sketch the normal-stress distribution acting over...Ch. 8.2 - Determine the state of stress at points A and B,...Ch. 8.2 - Determine the state of stress at point A on the...Ch. 8.2 - Determine the state of stress at point B on the...Ch. 8.2 - Determine the state of stress acting at point D....Ch. 8.2 - Determine the state of stress acting at point E....Ch. 8.2 - If it is subjected to the force system shown,...Ch. 8.2 - Solve Prob.840 for point B.Ch. 8.2 - Determine the stress components acting on the...Ch. 8.2 - Determine the stress components acting on the...Ch. 8.2 - Neglect the weight of the block.Ch. 8.2 - Neglect the weight of the block.Ch. 8.2 - He is supported uniformly by two bars, each having...Ch. 8.2 - Determine the state of stress at point A, and show...Ch. 8.2 - Determine the state of stress at point B, and show...Ch. 8.2 - Determine the state of stress at point C, and show...Ch. 8.2 - Determine the maximum radius e at which the load P...Ch. 8.2 - Specify the region to which this load can be...Ch. 8.2 - Determine the smallest force P that can be applied...Ch. 8.2 - The coiled spring is subjected to a force P. If we...Ch. 8.2 - The pins at C and D are at the same location as...Ch. 8.2 - Determine the state of stress at point A, and show...Ch. 8.2 - Determine the state of stress at point B, and show...Ch. 8.2 - Determine the stress components at points A and B...Ch. 8.2 - Determine the stress components at points C and D...Ch. 8.2 - Determine the stress components in the support...Ch. 8.2 - Determine the stress components in the support...Ch. 8.2 - If the force at the ram on the clamp at D is P= 8...Ch. 8.2 - Determine the maximum ram force P that can be...Ch. 8.2 - and an outer radius of 3.00 in. If the face of the...Ch. 8.2 - for points E and F.Ch. 8.2 - Determine the stress components at points A and B...Ch. 8.2 - Solve Prob.8-65 for points C and D.Ch. 8.2 - Due to internal gearing, this causes the block to...Ch. 8.2 - Determine the state of stress at point A and show...Ch. 8.2 - Solve Prob.868 for point B.Ch. 8.2 - Determine the stress components at point A. Sketch...Ch. 8.2 - for the stress components at point B.Ch. 8.2 - Determine the state of stress at point A at...Ch. 8.2 - Determine the state of stress at point B at...Ch. 8 - If it supports a cable loading of 800 lb,...Ch. 8 - Determine the state of stress at point E on the...Ch. 8 - Determine the state of stress at point F on the...Ch. 8 - The suspender arm AE has a square cross-sectional...Ch. 8 - If the cross section of the femur at section aa...Ch. 8 - If it has a mass of 5 kg/m, determine the largest...Ch. 8 - and is used to support the vertical reactions of...Ch. 8 - and is used to support the vertical reactions of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 8-7 (Thin Cylinder)arrow_forwardThe steel pressure tank shown has a 750-mm inner diameter and a 9-mm wall thickness. Knowing that the butt-welded seams form an angle β= 50° with the longitudinal axis of the tank and that the gage pressure in the tank is 1.5 MPa, determine, (a) the normal stress per-pendicular to the weld, (b) the shearing stress parallel to the weld.arrow_forwardI need the answer as soon as possiblearrow_forward
- The gas storage tank is fabricated by bolting together two half cylindrical thin shells and two hemispherical shells as shown. The tank is designed to withstand a pressure of 4.2 MPa. The tank and the 25-mm-diameter bolts are made from material having an allowable normal stress of 150 MPa and 250 MPa, respectively. The tank has an inner diameter of 4 m. A) Determine the required minimum thickness of the cylindrical shell. B) Determine the required minimum thickness of the hemispherical shell. C) Determine the minimum required number of longitudinal bolts per meter length at each side of the cylindrical shell.arrow_forwardThe pressure tank shown is fabricated from spirally-wrapped metal plates that are welded at the seams in the orientation shown. The tank has an inside diameter of 500 mm and a wall thickness of 6 mm. Determine the largest allowable gage pressure if the allowable shear stress parallel to the weld is 25 MPa. 50 O 2.63 MPa О 3.13 МРа О 3.36 МРа O 2.88 MPa O 2.44 MPaarrow_forward1. A steel rod of 20 mm diameter passes centrally through a copper tube of external diameter 40 mm and internal diameter 20 mm. The tube is closed at each end with the help of rigid washers (of negligible thickness) which are screwed by the nuts. The nuts are tightened until the compressive load on the copper tube is 50 kN. Determine the stresses in the rod and the tube, when the temperature of whole assembly falls by 50°C. Take Es = 200 GPa ; Ec = 100 GPa ; as = 12 x 10-6/°C and ac = 18 x 106/°C.arrow_forward
- The pressure tank shown is fabricated from spirally wrapped metal plates that are welded at the seams at an orientation of Assume B = 62.5. The tank has an inside diameter of d- 1800 mm and a wall thickness of t-7 mm. For a gage pressure of p-0.8 MPa, determine (a) the normal stress perpendicular to the weld and (b) the shear stress parallel to the weld. (a) on MPa (b) Tnt" MPaarrow_forward13. A steel rod of 20 mm diameter passes centrally through a copper tube of external diameter 40 mm and internal diameter 20 mm. The tube is closed at each end with the help of rigid washers (of negligible thickness) which are screwed by the nuts. The nuts are tightened until the compressive load on the copper tube is 50 kN. Determine the stresses in the rod and the tube, when the temperature of whole assembly falls by 50°C. Take E, = 200 GPa ;E̟ = 100 GPa ; a, = 12 × 106°C and a = 18 x 10°PC. [Ans. 99.6 MPa; 19.8 MPa]arrow_forward2. (a) A steel cylinder of 60 mm inner radius and 80 mm outer radius is subjected to an internal pressure of 30 MNm ². Determine the resulting hoop stress values at the inner and outer surfaces and graphically represent (sketch) the general form of hoop stress variation through the thickness of the cylinder wall. (b) (c) The cylinder in (a) is to be used as a shrink-fitted sleeve to strengthen a hydraulic cylinder manufactured of the same steel. The cylinder bore radius is 40 mm. When the hydraulic cylinder is not subjected to internal pressure, the interference pressure generated due to the shrink fit alone is 30 MNm2. Note: This is the same value of pressure as in the problem analysed in part (a). Determine the resulting hoop stress values at the inner and outer walls of the inner cylinder. Graphically represent the general form of hoop stress variation through the wall thickness in the combination indicating the key values as calculated in parts (a) and (b). (d) If the Young's…arrow_forward
- A pipe carrying steam at 3.5 MPa has an outside diameter of 450 mm and a wall thickness of 10 mm. A gasket is inserted between the flange at one end of the pipe and a flat plate used to cap the end. How many 47-mm-diameter bolts must be used to hold the cap on if the allowable stress in the bolts is 80 MPa, of which 55 MPa is the initial stress?arrow_forwardA double riveted butt joint, in which the pitch of the rivets in the outer rows is twice that in the inner Rows, connects two 16mm thick plates with two cover plates each 12 mm thick. The diameter of rivets is 22 mm. Determine the pitches of the rivets in the two rows if the working stresses are not to exceed the following limits: Tensile stress in plates =100 MPa; Shear stress in rivets =75 MPa; and bearing stress in rivets and plates =150 MPa. Make a fully dimensioned sketch of the joint by showing at least two views.arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License