VECTOR MECHANIC
VECTOR MECHANIC
12th Edition
ISBN: 9781264095032
Author: BEER
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 8.1, Problem 8.43P

Two 8-kg blocks A and B resting on shelves are connected by a rod of negligible mass. Knowing that the magnitude of a horizontal force P applied at C is slowly increased from zero, determine the value of P for which motion occurs and what that motion is when the coefficient of static friction between all surfaces is (a) μs = 0.40, (b) μs = 0.50.

Chapter 8.1, Problem 8.43P, Two 8-kg blocks A and B resting on shelves are connected by a rod of negligible mass. Knowing that

Fig. P8.43

(a)

Expert Solution
Check Mark
To determine

Find the magnitude of horizontal force P applied at C for which the motion occurs.

Answer to Problem 8.43P

The magnitude of the horizontal force P is 62.8N_.

The system slides_.

Explanation of Solution

Given information:

The mass of the blocks A and B is m=8kg.

The coefficient of static friction between the surfaces is μs=0.40.

Calculation:

Consider the blocks will slide to the right.

Find the weight (W) of the blocks A and B using the relation.

W=mg

Here, the acceleration due to gravity is g.

Consider the acceleration due to gravity is g=9.81m/s2.

Substitute 8 kg for m and 9.81m/s2 for g.

W=8×9.81=78.48N

Find the friction force at block A and B as follows.

FA=μsNAFB=μsNB

Here, the normal force at block A is NA and the normal force at block B is NB.

Show the free-body diagram of the shelves as in Figure 1.

VECTOR MECHANIC, Chapter 8.1, Problem 8.43P

Resolve the vertical component of forces.

Fy=0NA+NB78.4878.48=0NA+NB=156.96N

Resolve the horizontal component of forces.

Fx=0PFAFB=0PμsNAμsNB=0P=μs(NA+NB)

Substitute 0.40 for μs and 156.96 N for (NA+NB).

P=0.40×156.96=62.8N

Therefore, the magnitude of the horizontal force P is 62.8N_.

Take moment about point B.

MB=0P(100)+NA(93.26)78.48(93.26)+FA(200)=0P(100)+NA(93.26)7,319.0448+μsNA(200)=0

Substitute 62.8 N for P and 0.40 for μs.

62.8(100)+NA(93.26)7,319.0448+0.40×NA(200)=06,280+93.26NA7,319.0448+80NA=0173.26NA=1,039.0448NA=6N>0

Therefore, the system slides_.

(b)

Expert Solution
Check Mark
To determine

Find the magnitude of horizontal force P applied at C for which the motion occurs.

Answer to Problem 8.43P

The systemrotatesaboutpointB_.

The magnitude of the horizontal force P is 73.2N_.

Explanation of Solution

Given information:

The mass of the blocks A and B is m=8kg.

The coefficient of static friction between the surfaces is μs=0.50.

Calculation:

Consider the blocks will slide to the right.

Find the weight (W) of the blocks A and B using the relation.

W=mg

Here, the acceleration due to gravity is g.

Consider the acceleration due to gravity is g=9.81m/s2.

Substitute 8 kg for m and 9.81m/s2 for g.

W=8×9.81=78.48N

Find the friction force at block A and B as follows.

FA=μsNAFB=μsNB

Here, the normal force at block A is NA and the normal force at block B is NB.

Resolve the vertical component of forces.

Fy=0NA+NB78.4878.48=0NA+NB=156.96NNB=156.96NA

Resolve the horizontal component of forces.

Fx=0PFAFB=0PμsNAμsNB=0P=μs(NA+NB)

Substitute 0.50 for μs and 156.96 N for (NA+NB).

P=0.50×156.96=78.48N

Therefore, the magnitude of the horizontal force P is 78.48N_.

Take moment about point B.

MB=0P(100)+NA(93.26)78.48(93.26)+FA(200)=0P(100)+NA(93.26)7,319.0448+μsNA(200)=0

Substitute 78.48 N for P and 0.50 for μs.

78.48(100)+NA(93.26)7,319.0448+0.50NA(200)=07,848+93.26NA7,319.0448+100NA=0193.26NA=528.9552NA=2.73N<0

Therefore, the systemrotatesaboutpointB_.

The value of NA=0.

Take moment about point B.

MB=0P(100)+NA(93.26)78.48(93.26)+FA(200)=0P(100)+NA(93.26)7,319.0448+μsNA(200)=0

Substitute 0 for NA and 0.50 for μs.

P(100)+(0)(93.26)7,319.0448+0.50(0)(200)=0100P+07,316.0448+0=0P=73.2N

Therefore, the magnitude of the horizontal force P is 73.2N_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two slender rods of negligible weight are pin-connected at C and attached to blocks A and B, each of weight W. Knowing that P =1.260W and that the coefficient of static friction between the blocks and the horizontal surface is 0.30, determine the range of values of θ,between 0 and 180°, for which equilibrium is maintained.
Two slender rods of negligible weight are pin-connected at C and attached to blocks A and B , each with a weight W . Knowing that P = 1.260 W and that the coefficient of static friction between the blocks and the horizontal surface is 0.30, determine the range of values of 0 between 0 and 180° for which equilibrium is maintained.
Please solve the question in handwriting step by step.

Chapter 8 Solutions

VECTOR MECHANIC

Ch. 8.1 - The 10-kg block is attached to link AB and rests...Ch. 8.1 - Considering only values of less than 90,...Ch. 8.1 - Prob. 8.9PCh. 8.1 - Prob. 8.10PCh. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - The 50-lb block A and the 25-lb block B are...Ch. 8.1 - Three 4-kg packages A, B, and C are placed on a...Ch. 8.1 - Prob. 8.14PCh. 8.1 - A uniform crate with a mass of 30 kg must be moved...Ch. 8.1 - A worker slowly moves a 50-kg crate to the left...Ch. 8.1 - Prob. 8.17PCh. 8.1 - A 200-lb sliding door is mounted on a horizontal...Ch. 8.1 - Prob. 8.19PCh. 8.1 - Prob. 8.20PCh. 8.1 - Prob. 8.21PCh. 8.1 - Prob. 8.22PCh. 8.1 - The 10-lb uniform rod AB is held in the position...Ch. 8.1 - Prob. 8.24PCh. 8.1 - Prob. 8.25PCh. 8.1 - Prob. 8.26PCh. 8.1 - The press shown is used to emboss a small seal at...Ch. 8.1 - The machine base shown has a mass of 75 kg and is...Ch. 8.1 - Prob. 8.29PCh. 8.1 - Prob. 8.30PCh. 8.1 - Prob. 8.31PCh. 8.1 - Prob. 8.32PCh. 8.1 - Prob. 8.33PCh. 8.1 - A driver starts the engine of an automobile that...Ch. 8.1 - Prob. 8.35PCh. 8.1 - Two uniform rods each of weight W and length L are...Ch. 8.1 - A 1.2-m plank with a mass of 3 kg rests on two...Ch. 8.1 - Two identical uniform boards, each with a weight...Ch. 8.1 - A uniform 20-kg tube resting on a loading dock...Ch. 8.1 - Prob. 8.40PCh. 8.1 - A 10-ft beam, weighing 1200 lb, is to be moved to...Ch. 8.1 - (a) Show that the beam of Prob. 8.41 cannot be...Ch. 8.1 - Two 8-kg blocks A and B resting on shelves are...Ch. 8.1 - Prob. 8.44PCh. 8.1 - Prob. 8.45PCh. 8.1 - Two slender rods of negligible weight are...Ch. 8.1 - Two slender rods of negligible weight are...Ch. 8.2 - The machine part ABC is supported by a...Ch. 8.2 - Prob. 8.49PCh. 8.2 - Prob. 8.50PCh. 8.2 - Prob. 8.51PCh. 8.2 - Prob. 8.52PCh. 8.2 - Solve Prob. 8.52 assuming that the end of the beam...Ch. 8.2 - Prob. 8.54PCh. 8.2 - Prob. 8.55PCh. 8.2 - Block A supports a pipe column and rests as shown...Ch. 8.2 - A 200-lb block rests as shown on a wedge of...Ch. 8.2 - Prob. 8.58PCh. 8.2 - Prob. 8.59PCh. 8.2 - Prob. 8.60PCh. 8.2 - Prob. 8.61PCh. 8.2 - An 8 wedge is to be forced under a machine base at...Ch. 8.2 - Prob. 8.63PCh. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - A 15 wedge is forced under a 50-kg pipe as shown....Ch. 8.2 - Prob. 8.66PCh. 8.2 - Prob. 8.67PCh. 8.2 - Prob. 8.68PCh. 8.2 - Prob. 8.69PCh. 8.2 - Prob. 8.70PCh. 8.2 - Prob. 8.71PCh. 8.2 - The position of the automobile jack shown is...Ch. 8.2 - Prob. 8.73PCh. 8.2 - Prob. 8.74PCh. 8.2 - In the vise shown, the screw is single-threaded in...Ch. 8.2 - Prob. 8.76PCh. 8.3 - A lever of negligible weight is loosely fitted...Ch. 8.3 - Prob. 8.78PCh. 8.3 - 8.79 and 8.80 The double pulley shown is attached...Ch. 8.3 - Prob. 8.80PCh. 8.3 - 8.81 and 8.82 The double pulley shown is attached...Ch. 8.3 - Prob. 8.82PCh. 8.3 - Prob. 8.83PCh. 8.3 - The block and tackle shown are used to lower a...Ch. 8.3 - Prob. 8.85PCh. 8.3 - Prob. 8.86PCh. 8.3 - Prob. 8.87PCh. 8.3 - 8.87 and 8.88 A lever AB of negligible weight is...Ch. 8.3 - Prob. 8.89PCh. 8.3 - Prob. 8.90PCh. 8.3 - Prob. 8.91PCh. 8.3 - Prob. 8.92PCh. 8.3 - Prob. 8.93PCh. 8.3 - Prob. 8.94PCh. 8.3 - Prob. 8.95PCh. 8.3 - Prob. 8.96PCh. 8.3 - Solve Prob. 8.93 assuming that the normal force...Ch. 8.3 - Prob. 8.98PCh. 8.3 - Prob. 8.99PCh. 8.3 - A 900-kg machine base is rolled along a concrete...Ch. 8.3 - Prob. 8.101PCh. 8.3 - Prob. 8.102PCh. 8.4 - A rope having a weight per unit length of 0.4...Ch. 8.4 - A hawser is wrapped two full turns around a...Ch. 8.4 - Two cylinders are connected by a rope that passes...Ch. 8.4 - Prob. 8.106PCh. 8.4 - The coefficient of static friction between block B...Ch. 8.4 - Prob. 8.108PCh. 8.4 - A band belt is used to control the speed of a...Ch. 8.4 - Prob. 8.110PCh. 8.4 - The setup shown is used to measure the output of a...Ch. 8.4 - A flat belt is used to transmit a couple from drum...Ch. 8.4 - Prob. 8.113PCh. 8.4 - Prob. 8.114PCh. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - The speed of the brake drum shown is controlled by...Ch. 8.4 - Prob. 8.117PCh. 8.4 - Bucket A and block C are connected by a cable that...Ch. 8.4 - Prob. 8.119PCh. 8.4 - Prob. 8.120PCh. 8.4 - 8.121 and 8.123 A cable is placed around three...Ch. 8.4 - Prob. 8.122PCh. 8.4 - Prob. 8.123PCh. 8.4 - Prob. 8.124PCh. 8.4 - Prob. 8.125PCh. 8.4 - Prob. 8.126PCh. 8.4 - The axle of the pulley is frozen and cannot rotate...Ch. 8.4 - The 10-lb bar AE is suspended by a cable that...Ch. 8.4 - Prob. 8.129PCh. 8.4 - Prove that Eqs. (8.13) and (8.14) are valid for...Ch. 8.4 - Complete the derivation of Eq. (8.15), which...Ch. 8.4 - Prob. 8.132PCh. 8.4 - Solve Prob. 8.113 assuming that the flat belt and...Ch. 8 - 8.134 and 8.135 The coefficients of friction are S...Ch. 8 - Prob. 8.135RPCh. 8 - Prob. 8.136RPCh. 8 - A slender rod with a length of L is lodged between...Ch. 8 - The hydraulic cylinder shown exerts a force of 3...Ch. 8 - Prob. 8.139RPCh. 8 - Bar AB is attached to collars that can slide on...Ch. 8 - Two 10 wedges of negligible weight are used to...Ch. 8 - A 10 wedge is used to split a section of a log....Ch. 8 - Prob. 8.143RPCh. 8 - A lever of negligible weight is loosely fitted...Ch. 8 - In the pivoted motor mount shown, the weight W of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License