8-101 Suppose you have an aqueous solution prepared by dissolving 0.050 mol of NaH2PO4 in 1 L of water. This solution is not a buffer, but suppose you want to make it into one. How many moles of solid Na2HPO4 must you add to this aqueous solution to make it into:
(a) A buffer of pH 7.21
(b) A buffer of pH 6.21
(c) A buffer of pH 8.21
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
The number of moles to be added in NaH2 PO4 to make it into a buffer of pH 6.21 should be calculated.
Concept Introduction:
The pH of buffer solution is calculated using the following formula:
This is known as Henderson- Hasselbalch equation. Here,
Answer to Problem 91P
Explanation of Solution
Given Information:
An aqueous solution contains 0.050 moles of NaH2 PO4.
The volume of the solution is 1 L.
The pH of the buffer solution is 7.21.
A buffer is a solution which resists change in pH when limited amounts of an acid or a base are added to it. The given buffer is made of the weak acid, NaH2 PO4 and its conjugate base Na2 HPO4.
The Henderson-Hasselbalch equation for a buffer of a weak acid (HA) and its conjugate base(A- ) is given as:
By using the Henderson-Hasselbalch equation for the pH of the buffer solution we get,
As, we know that pKa of NaH2 PO4 is 7.21.
The volume of the buffer solution is 1 L. Assuming that there will not be any change in the volume of solution due to the addition of Na2 HPO4, the concentration terms in the Henderson-Hasselbalch equation can be replaced by the number of moles.
By substituting the values of pH, pKa and the number of moles of NaH2 PO4 for [NaH2 PO4 ] in the above equation, we get.
Bu taking antilog on both sides we get,
Thus,
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
The number of moles to be added in NaH2 PO4 to make it into a buffer of pH 7.21 should be calculated.
Concept Introduction:
The pH of buffer solution is calculated using the following formula:
This is known as Henderson- Hasselbalch equation. Here,
Answer to Problem 91P
Explanation of Solution
Given Information:
An aqueous solution contains 0.050 moles of NaH2 PO4.
The volume of the solution is 1 L.
The pH of the buffer solution is 6.21.
By using the Henderson-Hasselbalch equation for the pH of the buffer solution we get,
As, we know that pKa of NaH2 PO4 is 7.21.
The volume of the buffer solution is 1 L. Assuming that there will not be any change in the volume of solution due to the addition of Na2 HPO4, the concentration terms in the Henderson-Hasselbalch equation can be replaced by the number of moles.
By substituting the values of pH, pKa and the number of moles of NaH2 PO4 for [NaH2 PO4 ] in the above equation, we get.
Bu taking antilog on both sides we get,
Thus,
![Check Mark](/static/check-mark.png)
(c)
Interpretation:
The number of moles to be added in NaH2 PO4 to make it into a buffer of pH 8.21 should be calculated.
Concept Introduction:
The pH of buffer solution is calculated using the following formula:
This is known as Henderson- Hasselbalch equation. Here,
Answer to Problem 91P
Explanation of Solution
Given Information:
An aqueous solution contains 0.050 moles of NaH2 PO4.
The volume of the solution is 1 L.
The pH of the buffer solution is 8.21.
By using the Henderson-Hasselbalch equation for the pH of the buffer solution we get,
As, we know that pKa of NaH2 PO4 is 7.21.
The volume of the buffer solution is 1 L. Assuming that there will not be any change in the volume of solution due to the addition of Na2 HPO4, the concentration terms in the Henderson-Hasselbalch equation can be replaced by the number of moles.
By substituting the values of pH, pKa and the number of moles of NaH2 PO4 for [NaH2 PO4 ] in the above equation, we get.
Bu taking antilog on both sides we get,
Thus,
Want to see more full solutions like this?
Chapter 8 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
- NH2 1. CH3–MgCl 2. H3O+ ? As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new C - C bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new C - C bond. Х ☐: Carrow_forwardPredict the major products of this organic reaction. If there will be no major products, check the box under the drawing area instead. No reaction. : + Х è OH K Cr O 2 27 2 4' 2 Click and drag to start drawing a structure.arrow_forwardLaminar compounds are characterized by havinga) a high value of the internal surface of the solid.b) a high adsorption potential.arrow_forward
- Intercalation compounds have their sheetsa) negatively charged.b) positively charged.arrow_forwardIndicate whether the following two statements are correct or not:- Polythiazine, formed by N and S, does not conduct electricity- Carbon can have a specific surface area of 3000 m2/garrow_forwardIndicate whether the following two statements are correct or not:- The S8 heterocycle is the origin of a family of compounds- Most of the elements that give rise to stable heterocycles belong to group d.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)