INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
12th Edition
ISBN: 9781337915977
Author: Bettelheim
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 68P
Interpretation Introduction
Interpretation:
The working of sprinter’s trick should be explained. Why an athlete wants to raise the pH of his or her blood should be explained.
Concept Introduction:
The irregularity in blood is not just because of reduction in pH. This pH by be increased giving rise to alkalosis condition. This happens when pH of blood increases from 7.45. This can results in overstimulation in the nervous system, dizziness and muscle cramps.
Also, fever, infection and hysteria can cause excessive carbon dioxide loss resulting increase in ratio of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1. Predict the organic product(s) of the following reactions. Assume excess of reagents unless
otherwise noted.
a)
&l
BH3 •THF
b)
1) NaOH
2) H3O+
solve
d)
ala
1) EtMgBr
2) H3O+
e)
H2N
سكر
CuLi
NH2
1) SOCI2
2) EtMgBr
3) H3O+
NC
H3O+
Δ
There are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below:
QUESTION: Summarise and report these results including an indication of measurement uncertainty.
In both calculation samples calculate if an outlier is present, max value, number of samples, mean, standard deviation, g (suspect), g (critical) and t (critical).
Mass of Taurine (mg)
Mass of Taurine (mg)
(Table continued)
152.01
152.23
151.87
151.45
154.11
152.64
152.98
153.24
152.88
151.45
153.49
152.48
150.68
152.33
151.52
153.63
152.48
151.68
153.17
153.40
153.77
153.67
152.34
153.16
152.57
153.02
152.86
151.50
151.23
152.57
152.72
151.54
146.47
152.38
152.44
152.54
152.53
152.54
151.32…
Indicate the rate expressions for reactions that have order 0, 1, and 2.
Chapter 8 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
Ch. 8.3 - Problem 8-1 Draw the acid and base reactions for...Ch. 8.4 - Prob. 8.2QCCh. 8.5 - Prob. 8.3QCCh. 8.5 - Problem 8-4 Which is the stronger acid? (a)...Ch. 8.6 - Problem 8-5 Write the balanced net ionic equation...Ch. 8.7 - Problem 8-6 The [OH-] of an aqueous solution is M....Ch. 8.8 - Problem 8-7 (a) The [H3O+] of an acidic solution...Ch. 8.8 - Problem 8-8 The [OH-] of a solution is M. What are...Ch. 8.9 - Problem 8-9 Calculate the concentration of an...Ch. 8.10 - Problem 8-10 What is the pH of a buffer solution...
Ch. 8.11 - Problem 8-11 What is the pH of a boric acid buffer...Ch. 8.12 - Prob. 8.12QCCh. 8 - 8-13 Define (a) an Arrhenius acid and (b) an...Ch. 8 - 8-14 Write an equation for the reaction that takes...Ch. 8 - 8-15 Write an equation for the reaction that takes...Ch. 8 - 8-16 For each of the following, tell whether the...Ch. 8 - 8-17 For each of the following, tell whether the...Ch. 8 - 8-18 Which of these acids are monoprotic, which...Ch. 8 - 8-19 Define (a) a Brønsted—Lowry acid and (b) a...Ch. 8 - 8-20 Write the formula for the conjugate base of...Ch. 8 - 8-21 Write the formula for the conjugate base of...Ch. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - 8-25 Draw the acid and base reactions for the...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - 8-28 Will carbon dioxide be evolved as a gas when...Ch. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - 8-33 Write an equation for the reaction of HCI...Ch. 8 - 8-34 When a solution of sodium hydroxide is added...Ch. 8 - 8-35 Given the following values of [H3O+),...Ch. 8 - 8-36 Given the following values of [OH-],...Ch. 8 - 8-37 What is the pH of each solution given the...Ch. 8 - 8-38 What is the pH and pOH of each solution given...Ch. 8 - 8-39 What is the pH of each solution given the...Ch. 8 - Prob. 28PCh. 8 - 8-41 What is the [OH-] and pOH of each solution?...Ch. 8 - Prob. 30PCh. 8 - 8-43 What is the molarity of a solution made by...Ch. 8 - 8-44 What is the molarity of a solution made by...Ch. 8 - 8-45 Describe how you would prepare each of the...Ch. 8 - 8-46 If 25.0 mL of an aqueous solution of H2SO4...Ch. 8 - 8-47 A sample of 27.0 mL of 0.310 M NaOH is...Ch. 8 - 8-48 A 0.300 M solution of H2SO4 was used to...Ch. 8 - 8-49 A solution of NaOH base was titrated with...Ch. 8 - 8-50 The usual concentration of HCO3- ions in...Ch. 8 - 8-51 What is the end point of a titration?Ch. 8 - Prob. 40PCh. 8 - 8-53 Write equations to show what happens when, to...Ch. 8 - 8-54 Write equations to show what happens when, to...Ch. 8 - 8-55 We commonly refer to a buffer as consisting...Ch. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - 8-58 What is the connection between buffer action...Ch. 8 - Prob. 47PCh. 8 - 8-60 How is the buffer capacity affected by the...Ch. 8 - 8-61 Can 100 of 0.1 M phosphate buffer at pH 7.2...Ch. 8 - 8-62 What is the pH of a buffer solution made by...Ch. 8 - 8-63 The pH of a solution made by dissolving 1.0...Ch. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - 8-66 Calculate the pH of an aqueous solution...Ch. 8 - Prob. 57PCh. 8 - 8-68 If you have 100 mL of a 0.1 M buffer made of...Ch. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - 8-71 Explain why you do not need to know the...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - 8-76 (Chemical Connections 8B) Name the most...Ch. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - 8-79 (Chemical Connections 8D) Another form of the...Ch. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - 8-82 Assume that you have a dilute solution of HCI...Ch. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - 8-86 Following are three organic acids and the...Ch. 8 - 8-87 The pKavalue of barbituric acid is 5.0. If...Ch. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI...Ch. 8 - 8-94 Suppose you wish to make a buffer whose pH is...Ch. 8 - Prob. 85PCh. 8 - 8-96 Suppose you want to make a CH3COOH/CH3COO-...Ch. 8 - Prob. 87PCh. 8 - 8-98 When a solution prepared by dissolving 4.00 g...Ch. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - 8-101 Suppose you have an aqueous solution...Ch. 8 - Prob. 92PCh. 8 - 8-103 Suppose you have a phosphate buffer...Ch. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - 8-107 Following are pH ranges for several human...Ch. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - 8-108 What is the ratio of HPO42-/H2PO4- in a...Ch. 8 - Prob. 101PCh. 8 - 8-110 A concentrated hydrochloric acid solution...Ch. 8 - 8-111 The volume of an adult's stomach ranges from...Ch. 8 - 8-112 Consider an initial 0.040 M hypobromous acid...Ch. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - 8-115 When a solution prepared by dissolving 0.125...Ch. 8 - 8-116 A railroad tank car derails and spills 26...Ch. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- PROBLEMS Q1) Label the following salts as either acidic, basic, or neutral a) Fe(NOx) c) AlBr b) NH.CH COO d) HCOON (1/2 mark each) e) Fes f) NaBr Q2) What is the pH of a 0.0750 M solution of sulphuric acid?arrow_forward8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major contributor in each case, or if they are equivalent (45) (2) -PH2 سمة مدarrow_forwardA J то گای ه +0 Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01 number of moles= 0.400/277.15 = 0.00144 moles 2 x 0.00 144=0.00288 moves arams of acetophenone = 0.00144 X 120.16 = 0.1739 0.1739x2=0.3469 grams of benzaldehyde = 0.00144X106.12=0.1539 0.1539x2 = 0.3069 Starting materials: 0.3469 Ox acetophenone, 0.3069 of benzaldehyde 3arrow_forward
- 1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.arrow_forward3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br Oarrow_forward
- 4. For the reactions below, draw the expected product. Be sure to indicate relevant stereochemistry or formal charges in the product structure. a) CI, H e b) H lux ligh Br 'Harrow_forwardArrange the solutions in order of increasing acidity. (Note that K (HF) = 6.8 x 10 and K (NH3) = 1.8 × 10-5) Rank solutions from least acidity to greatest acidity. To rank items as equivalent, overlap them. ▸ View Available Hint(s) Least acidity NH&F NaBr NaOH NH,Br NaCIO Reset Greatest acidityarrow_forward1. Consider the following molecular-level diagrams of a titration. O-HA molecule -Aion °° о ° (a) о (b) (c) (d) a. Which diagram best illustrates the microscopic representation for the EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium. hydroxide? (e)arrow_forward
- Answers to the remaining 6 questions will be hand-drawn on paper and submitted as a single file upload below: Review of this week's reaction: H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O ---> H₂NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3 pts) NH2(C=NH)-N(CH)CH2COOH This bond Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem Q9 is valid). (4 pts) Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should be ready to understand the first half of one of the Grignard reactions presented in a past…arrow_forwardPropose a synthesis pathway for the following transformations. b) c) d)arrow_forwardThe rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning

General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning

General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY