INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
12th Edition
ISBN: 9781337915977
Author: Bettelheim
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 55P
Interpretation Introduction
Interpretation:
It is to be shown that the pH of a buffer is 1 unit higher than its
Concept Introduction:
The pH of buffer can be calculated using the Henderson-Hasselbalch equation as follows:
Here, pH is negative log of hydrogen ion,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Ksp for In(OH)3 is 1.3 x 10-37.
Find the pH of an In(OH)3 saturated solution.
Find the concentration of In3+ in a buffered solution at pH 5
Find the concentration of In3+ in a buffered solution at pH 6
Find the concentration of In3+ in a buffered solution at pH 7
Please answer complete question this all parts of a question
14. A so-called PBS buffer (phosphate buffered saline) is prepared by according to the given
protocol:
●
Prepare 800 mL of distilled water in a suitable container;
●
Add 8 g of NaCl to the solution;
Add 200 mg of KCl to the solution;
Add 1.44 g of Na₂HPO4 to the solution;
Add 245 mg of KH₂PO4 to the solution;
Adjust solution to desired pH (typically pH ≈ 7.4); and
Add distilled water until volume is 1 L.
(a) Calculate the pH of the initial solution (before pH is adjusted).
(b) How many moles of acid or base are required to adjust the pH to 7.4?
Nitesh
Chapter 8 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
Ch. 8.3 - Problem 8-1 Draw the acid and base reactions for...Ch. 8.4 - Prob. 8.2QCCh. 8.5 - Prob. 8.3QCCh. 8.5 - Problem 8-4 Which is the stronger acid? (a)...Ch. 8.6 - Problem 8-5 Write the balanced net ionic equation...Ch. 8.7 - Problem 8-6 The [OH-] of an aqueous solution is M....Ch. 8.8 - Problem 8-7 (a) The [H3O+] of an acidic solution...Ch. 8.8 - Problem 8-8 The [OH-] of a solution is M. What are...Ch. 8.9 - Problem 8-9 Calculate the concentration of an...Ch. 8.10 - Problem 8-10 What is the pH of a buffer solution...
Ch. 8.11 - Problem 8-11 What is the pH of a boric acid buffer...Ch. 8.12 - Prob. 8.12QCCh. 8 - 8-13 Define (a) an Arrhenius acid and (b) an...Ch. 8 - 8-14 Write an equation for the reaction that takes...Ch. 8 - 8-15 Write an equation for the reaction that takes...Ch. 8 - 8-16 For each of the following, tell whether the...Ch. 8 - 8-17 For each of the following, tell whether the...Ch. 8 - 8-18 Which of these acids are monoprotic, which...Ch. 8 - 8-19 Define (a) a Brønsted—Lowry acid and (b) a...Ch. 8 - 8-20 Write the formula for the conjugate base of...Ch. 8 - 8-21 Write the formula for the conjugate base of...Ch. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - 8-25 Draw the acid and base reactions for the...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - 8-28 Will carbon dioxide be evolved as a gas when...Ch. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - 8-33 Write an equation for the reaction of HCI...Ch. 8 - 8-34 When a solution of sodium hydroxide is added...Ch. 8 - 8-35 Given the following values of [H3O+),...Ch. 8 - 8-36 Given the following values of [OH-],...Ch. 8 - 8-37 What is the pH of each solution given the...Ch. 8 - 8-38 What is the pH and pOH of each solution given...Ch. 8 - 8-39 What is the pH of each solution given the...Ch. 8 - Prob. 28PCh. 8 - 8-41 What is the [OH-] and pOH of each solution?...Ch. 8 - Prob. 30PCh. 8 - 8-43 What is the molarity of a solution made by...Ch. 8 - 8-44 What is the molarity of a solution made by...Ch. 8 - 8-45 Describe how you would prepare each of the...Ch. 8 - 8-46 If 25.0 mL of an aqueous solution of H2SO4...Ch. 8 - 8-47 A sample of 27.0 mL of 0.310 M NaOH is...Ch. 8 - 8-48 A 0.300 M solution of H2SO4 was used to...Ch. 8 - 8-49 A solution of NaOH base was titrated with...Ch. 8 - 8-50 The usual concentration of HCO3- ions in...Ch. 8 - 8-51 What is the end point of a titration?Ch. 8 - Prob. 40PCh. 8 - 8-53 Write equations to show what happens when, to...Ch. 8 - 8-54 Write equations to show what happens when, to...Ch. 8 - 8-55 We commonly refer to a buffer as consisting...Ch. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - 8-58 What is the connection between buffer action...Ch. 8 - Prob. 47PCh. 8 - 8-60 How is the buffer capacity affected by the...Ch. 8 - 8-61 Can 100 of 0.1 M phosphate buffer at pH 7.2...Ch. 8 - 8-62 What is the pH of a buffer solution made by...Ch. 8 - 8-63 The pH of a solution made by dissolving 1.0...Ch. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - 8-66 Calculate the pH of an aqueous solution...Ch. 8 - Prob. 57PCh. 8 - 8-68 If you have 100 mL of a 0.1 M buffer made of...Ch. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - 8-71 Explain why you do not need to know the...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - 8-76 (Chemical Connections 8B) Name the most...Ch. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - 8-79 (Chemical Connections 8D) Another form of the...Ch. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - 8-82 Assume that you have a dilute solution of HCI...Ch. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - 8-86 Following are three organic acids and the...Ch. 8 - 8-87 The pKavalue of barbituric acid is 5.0. If...Ch. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI...Ch. 8 - 8-94 Suppose you wish to make a buffer whose pH is...Ch. 8 - Prob. 85PCh. 8 - 8-96 Suppose you want to make a CH3COOH/CH3COO-...Ch. 8 - Prob. 87PCh. 8 - 8-98 When a solution prepared by dissolving 4.00 g...Ch. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - 8-101 Suppose you have an aqueous solution...Ch. 8 - Prob. 92PCh. 8 - 8-103 Suppose you have a phosphate buffer...Ch. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - 8-107 Following are pH ranges for several human...Ch. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - 8-108 What is the ratio of HPO42-/H2PO4- in a...Ch. 8 - Prob. 101PCh. 8 - 8-110 A concentrated hydrochloric acid solution...Ch. 8 - 8-111 The volume of an adult's stomach ranges from...Ch. 8 - 8-112 Consider an initial 0.040 M hypobromous acid...Ch. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - 8-115 When a solution prepared by dissolving 0.125...Ch. 8 - 8-116 A railroad tank car derails and spills 26...Ch. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 8-60 How is the buffer capacity affected by the ratio of the conjugate base to the conjugate acid?arrow_forward8-58 What is the connection between buffer action and Le Chatelier's principle?arrow_forward8-61 Can 100 of 0.1 M phosphate buffer at pH 7.2 act as an effective buffer against 20 mL of 1 M NaOH?arrow_forward
- 8-68 If you have 100 mL of a 0.1 M buffer made of NaH2PO4 and Na2HPO4 that is at pH 6.8 and you add 10 mL of 1 M HCI, will you still have a usable buffer? Why or why not?arrow_forward8-63 The pH of a solution made by dissolving 1.0 mol of propanoic acid and 1.0 mol of sodium propanoate in 1.0 L of water is 4.85. (a) What would the pH be if we used 0.10 mol of each (in 1 L of water) instead of 1.0 mol? (b) With respect to buffer capacity, how would the two solutions differ?arrow_forward8-55 We commonly refer to a buffer as consisting of approximately equal molar amounts of a weak acid and its conjugate base—for example, CH3COOH and CH3COO-. Is it also possible to have a buffer consisting of approximately equal molar amounts of a weak base and its conjugate acid? Explain.arrow_forward
- 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI solution require the same amount of 1.0 M NaOH to hit a titration end point? Explain.arrow_forwardWhich of the indicators in Fig. 14-8 could be used for the titrations in Exercises 61 and 63?arrow_forward8-47 A sample of 27.0 mL of 0.310 M NaOH is titrated with 0.740 M H2SO4. How many milliliters of the H2SO4 solution are required to reach the end point?arrow_forward
- 8-101 Suppose you have an aqueous solution prepared by dissolving 0.050 mol of NaH2PO4 in 1 L of water. This solution is not a buffer, but suppose you want to make it into one. How many moles of solid Na2HPO4 must you add to this aqueous solution to make it into: (a) A buffer of pH 7.21 (b) A buffer of pH 6.21 (c) A buffer of pH 8.21arrow_forward8-94 Suppose you wish to make a buffer whose pH is 8.21. You have available 1 L of 0.100 M NaH2PO4 and solid Na2HPO4. How many grams of the solid Na2HPO4 must be added to the stock solution to accomplish this task? (Assume that the volume remains 1 L.)arrow_forward8-62 What is the pH of a buffer solution made by dissolving 0.10 mol of formic acid, HCOOH, and 0.10 mol of sodium formate, HCOONa, in 1 L of water?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License