Concept explainers
8-112 Consider an initial 0.040 M hypobromous acid (HOBr) solution at a certain temperature.
At equilibrium after partial dissociation, its pH is found to be 5.05. What is the acid ionization constant, Ka, for hypobromous acid at this temperature?
Interpretation:
The acid dissociation constant of hypobromous acid is to be calculated.
Concept Introduction:
Weak acids do not dissociate completely. Let HA be a weak acid. The dissociation of the weak acid can be represented by the chemical equation,
The equation for acid dissociation constant can be written from this chemical equation.
Here,
Answer to Problem 104P
The acid dissociation constant of hypobromous acid is
Explanation of Solution
Hypobromous acid is a weak acid. Hence, it do not dissociate completely. The dissociation of the given weak acid can be represented by the chemical equation,
The equation for acid dissociation constant can be written from this chemical equation.
The concentrations of each of the ions at equilibrium can be obtained from the ICE table. Where ICE represents the Initial, Change and Equilibrium concentrations of the weak acid.
The hydrogen ion concentration can be obtained from the given pH. The pH is defined as the negative logarithm of the hydrogen ion concentration.
The pH of the weak acid solution at equilibrium is 5.05. Thus, we can calculate the concentration of the hydrogen ion.
We calculated the “x” which is the concentration of hydrogen ion. The concentration of the anion is also “x”. Thus,
Now, we need to calculate the concentration of
The concentrations of the anion, hydrogen ion and hypobromous acid are used in the equation used for acid dissociation constant.
Thus, the acid dissociation constant of hypobromous acid is
Weak acids do not dissociate completely. Each weak acid has a specific dissociation constant. Here, ICE table is made from the given chemical equation. Thus, the acid dissociation constant of hypobromous acid is
Want to see more full solutions like this?
Chapter 8 Solutions
INTRO.TO GENERAL,ORGAN...-OWLV2 ACCESS
- Please provide with answer, steps and explanation of ideas to solve.arrow_forwardUsing what we have learned in CHEM 2310 and up through class on 1/31, propose a series of reaction steps to achieve the transformation below. Be sure to show all reagents and intermediates for full credit. You do not need to draw mechanism arrows, but you do need to include charges where appropriate. If you do not put your group name, you will get half credit at most. ? Brarrow_forwardDraw a mechanism for the formation of 2-bromovanillin using bromonium ion as the reactive electrophile.arrow_forward
- Please provide with answer, steps and explanation of ideas to solve.arrow_forwardIndicate whether the copper(II) acetate dimer, in its dihydrated form with the formula [(CH3COO)2Cu]2·2H2O, is a metal cluster, a cage compound, or neither.arrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning