Three-Strikes Law California’s controversial “three-strikes law” requires judges to sentence anyone convicted of three felony offenses to life in prison. Supporters say that this decreases crime both because it is a strong deterrent and because career criminals are removed from the streets. Opponents argue (among other things) that people serving life sentences have nothing to lose, so violence within the prison system increases. To test the opponents’ claim, researchers examined data starting from the mid-1990s from the California Department of Corrections. “Three Strikes: Yes” means the person had committed three or more felony offenses and was probably serving a life sentence. “Three Strikes: No” means the person had committed no more than two offenses. “Misconduct” includes serious offenses (such as assaulting an officer) and minor offenses (such as not standing for a count). “No Misconduct” means the offender had not committed any offenses in prison.
a. Compare the proportions of misconduct in these samples. Which proportion is higher, the proportion of misconduct for those who had three strikes or that for those who did not have three strikes? Explain.
b. Treat this as though it were a random sample, and determine whether those with three strikes tend to have more offenses than those who do not. Use a
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
INTRODUCTORY STATISTICS (LOOSELEAF)
Additional Math Textbook Solutions
APPLIED STAT.IN BUS.+ECONOMICS
College Algebra (Collegiate Math)
Elementary Algebra For College Students (10th Edition)
Precalculus: A Unit Circle Approach (3rd Edition)
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
- A local electronics store just received a shipment of 620 HDMI cables. The manager wants to estimate the number of defective HDMI cables in the shipment. Rather than checking every HDMI cable, the manager plans to take a simple random sample of size 62 in order to estimate the proportion of defective HDMI cables in the shipment. If the sample proportion of defective HDMI cables, p̂p̂, is greater than 0.0323 (there are more than two defective HDMI cables in the sample), the manager will file a complaint and request a new shipment. Suppose that the true proportion of defective HDMI cables in the shipment is approximately p = 0.02. What is the expected value of the sample proportion? E(Pˆ)E(P^)= Since the sample is to be drawn from a finite population, and since the sample is 5% of the population size, the finite population correction factor needed when you calculate the standard deviation of the sampling distribution. What is the standard deviation of the…arrow_forwardAn automobile battery manufacturer offers a 39/50 warranty on its batteries. The first number in the warranty code is the free-replacement period; the second number is the prorated-credit period. Under this warranty, if a battery fails within 39 months of purchase, the manufacturer replaces the battery at no charge to the consumer. If the battery fails after 39 months but within 50 months, the manufacturer provides a prorated credit toward the purchase of a new battery. The manufacturer assumes that X, the lifetime of its auto batteries, is normally distributed with a mean of 44 months and a standard deviation of 3.6 months. Use the following Distributions tool to help you answer the questions that follow. (Hint: When you adjust the parameters of a distribution, you must reposition the vertical line (or lines) for the correct areas to be displayed.) 0123 Select a Distribution If the manufacturer’s assumptions are correct, it would need to replace of its…arrow_forwardIn regards to conducting a linear contrast after a one-way ANOVA, can you explain how seemingly arbitrary weights that "emphasize or de-emphasize" certain variables in a linear combination and sum to zero are able to provide information about how certain groups differ from each other? For example, if we havethree groups A, B, and C, and we want tocompare the mean of group A with theaverage of groups B and C, the weights inthis case are 1 for group A, and -0.5 for groupsB and C, which sum to zero. But how do these numbers model the relationship of comparing one group to the average of the other two? Does it have to do with how the math is carried out, such as how the test statistic is created?arrow_forward
- Can you simply and intuitively explain the purpose of a contrast to the treatment sum of squares? For example, do orthogonal contrasts partition the treatment sum of squares into additive components that represent the variation due to each contrast? If so, what would be the purpose of this?arrow_forwardThe height of the graph of the probability density function f(x) varies with X as follows (round to four decimal places): X 16 Height of the Graph of the Probability Density Function You are flying out of Terminal 3 at JFK on a Wednesday afternoon between 3:00 and 4:00 PM. You get stuck in a traffic jam on the way to the airport, and if it takes you longer than 12 minutes to clear security, you'll miss your flight. The probability that you'll miss your flight is You have arrived at the airport and have been waiting 10 minutes at the security checkpoint. Recall that if you spend more than 12 minutes clearing security, you will miss your flight. Now what is the probability that you'll miss your flight? ○ 0.5 O 0.25 ○ 0.8333 ○ 0.6667arrow_forwardonsider a random variable x that follows a uniform distribution, with a = 2 and b = 9. What is the probability that x is less than 6? P(x < 6) = 0.2857 P(x < 6) = 0.5714 P(x < 6) = 0.17142 P(x < 6) = 0.4286 What is the probability that x is between 4 and 6? P(4 ≤ x ≤ 6) = 0.2857 P(4 ≤ x ≤ 6) = 0.157135 P(4 ≤ x ≤ 6) = 0.0928525 P(4 ≤ x ≤ 6) = 0.11428arrow_forward
- Consider a random variable x that follows a uniform distribution, with a = 8 and b = 14. What is the probability that x is less than 13? P(x < 13) = 0.1667 P(x < 13) = 0.41665 P(x < 13) = 0.24999 P(x < 13) = 0.8333 What is the probability that x is between 11 and 12? P(11 ≤ x ≤ 12) = 0.0541775 P(11 ≤ x ≤ 12) = 0.1667 P(11 ≤ x ≤ 12) = 0.06668 P(11 ≤ x ≤ 12) = 0.091685arrow_forwardplease solve this problem step by step and make it quick pleasearrow_forwardWHAT IS THE CORRECT ANSWER AND WHY?arrow_forward
- A common way for two people to settle a frivolous dispute is to play a game of rock-paper-scissors. In this game, each person simultaneously displays a hand signal to indicate a rock, a piece of paper, or a pair of scissors. Rock beats scissors, scissors beats paper, and paper beats rock. If both players select the same hand signal, the game results in a tie. Two roommates, roommate A and roommate B, are expecting company and are arguing over who should have to wash the dishes before the company arrives. Roommate A suggests a game of rock-paper-scissors to settle the dispute. Consider the game of rock-paper-scissors to be an experiment. In the long run, roommate A chooses rock 21% of the time, and roommate B chooses rock 61% of the time; roommate A selects paper 39% of the time, and roommate B selects paper 21% of the time; roommate A chooses scissors 40% of the time, and roommate B chooses scissors 18% of the time. (These choices are made randomly and independently of each…arrow_forwardA qualifying exam for a graduate school program has a math section and a verbal section. Students receive a score of 1, 2, or 3 on each section. Define X as a student’s score on the math section and Y as a student’s score on the verbal section. Test scores vary according to the following bivariate probability distribution. y 1 2 3 1 0.22 0.33 0.05 x 2 0.00 0.08 0.20 3 0.07 0.05 0.00 μXX = , and μYY = σXX = , and σYY = The covariance of X and Y is . The coefficient of correlation is . The variables X and Y independent. The expected value of X + Y is , and the variance of X + Y is . To be accepted to a particular graduate school program, a student must have a combined score of 4 on the qualifying exam. What is the probability that a randomly selected exam taker qualifies for the program? 0.45 0.47 0.46 0.33 Chebysheff’s Theorem states that the…arrow_forwardwhat is the correct answer and why?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill