COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 90QAP
To determine
(a)
Tension of the string and
To determine
(b)
Moment of inertia of yo yo
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
COLLEGE PHYSICS
Ch. 8 - Prob. 1QAPCh. 8 - Prob. 2QAPCh. 8 - Prob. 3QAPCh. 8 - Prob. 4QAPCh. 8 - Prob. 5QAPCh. 8 - Prob. 6QAPCh. 8 - Prob. 7QAPCh. 8 - Prob. 8QAPCh. 8 - Prob. 9QAPCh. 8 - Prob. 10QAP
Ch. 8 - Prob. 11QAPCh. 8 - Prob. 12QAPCh. 8 - Prob. 13QAPCh. 8 - Prob. 14QAPCh. 8 - Prob. 15QAPCh. 8 - Prob. 16QAPCh. 8 - Prob. 17QAPCh. 8 - Prob. 18QAPCh. 8 - Prob. 19QAPCh. 8 - Prob. 20QAPCh. 8 - Prob. 21QAPCh. 8 - Prob. 22QAPCh. 8 - Prob. 23QAPCh. 8 - Prob. 24QAPCh. 8 - Prob. 25QAPCh. 8 - Prob. 26QAPCh. 8 - Prob. 27QAPCh. 8 - Prob. 28QAPCh. 8 - Prob. 29QAPCh. 8 - Prob. 30QAPCh. 8 - Prob. 31QAPCh. 8 - Prob. 32QAPCh. 8 - Prob. 33QAPCh. 8 - Prob. 34QAPCh. 8 - Prob. 35QAPCh. 8 - Prob. 36QAPCh. 8 - Prob. 37QAPCh. 8 - Prob. 38QAPCh. 8 - Prob. 39QAPCh. 8 - Prob. 40QAPCh. 8 - Prob. 41QAPCh. 8 - Prob. 42QAPCh. 8 - Prob. 43QAPCh. 8 - Prob. 44QAPCh. 8 - Prob. 45QAPCh. 8 - Prob. 46QAPCh. 8 - Prob. 47QAPCh. 8 - Prob. 48QAPCh. 8 - Prob. 49QAPCh. 8 - Prob. 50QAPCh. 8 - Prob. 51QAPCh. 8 - Prob. 52QAPCh. 8 - Prob. 53QAPCh. 8 - Prob. 54QAPCh. 8 - Prob. 55QAPCh. 8 - Prob. 56QAPCh. 8 - Prob. 57QAPCh. 8 - Prob. 58QAPCh. 8 - Prob. 59QAPCh. 8 - Prob. 60QAPCh. 8 - Prob. 61QAPCh. 8 - Prob. 62QAPCh. 8 - Prob. 63QAPCh. 8 - Prob. 64QAPCh. 8 - Prob. 65QAPCh. 8 - Prob. 66QAPCh. 8 - Prob. 67QAPCh. 8 - Prob. 68QAPCh. 8 - Prob. 69QAPCh. 8 - Prob. 70QAPCh. 8 - Prob. 71QAPCh. 8 - Prob. 72QAPCh. 8 - Prob. 73QAPCh. 8 - Prob. 74QAPCh. 8 - Prob. 75QAPCh. 8 - Prob. 76QAPCh. 8 - Prob. 77QAPCh. 8 - Prob. 78QAPCh. 8 - Prob. 79QAPCh. 8 - Prob. 80QAPCh. 8 - Prob. 81QAPCh. 8 - Prob. 82QAPCh. 8 - Prob. 83QAPCh. 8 - Prob. 84QAPCh. 8 - Prob. 85QAPCh. 8 - Prob. 86QAPCh. 8 - Prob. 87QAPCh. 8 - Prob. 88QAPCh. 8 - Prob. 89QAPCh. 8 - Prob. 90QAPCh. 8 - Prob. 91QAPCh. 8 - Prob. 92QAPCh. 8 - Prob. 93QAPCh. 8 - Prob. 94QAPCh. 8 - Prob. 95QAPCh. 8 - Prob. 96QAPCh. 8 - Prob. 97QAPCh. 8 - Prob. 98QAPCh. 8 - Prob. 99QAPCh. 8 - Prob. 100QAPCh. 8 - Prob. 101QAPCh. 8 - Prob. 102QAPCh. 8 - Prob. 103QAPCh. 8 - Prob. 104QAPCh. 8 - Prob. 105QAPCh. 8 - Prob. 106QAPCh. 8 - Prob. 107QAPCh. 8 - Prob. 108QAPCh. 8 - Prob. 109QAPCh. 8 - Prob. 110QAPCh. 8 - Prob. 111QAPCh. 8 - Prob. 112QAPCh. 8 - Prob. 113QAPCh. 8 - Prob. 114QAPCh. 8 - Prob. 115QAPCh. 8 - Prob. 116QAPCh. 8 - Prob. 117QAPCh. 8 - Prob. 118QAPCh. 8 - Prob. 119QAPCh. 8 - Prob. 120QAPCh. 8 - Prob. 121QAPCh. 8 - Prob. 122QAPCh. 8 - Prob. 123QAPCh. 8 - Prob. 124QAPCh. 8 - Prob. 125QAPCh. 8 - Prob. 126QAPCh. 8 - Prob. 127QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forwardWhile exercising in a fitness center, a man lies face down on a bench and lifts a weight with one lower leg by contacting the muscles in the back of the upper leg. (a) Find the angular acceleration produced given the mass lifted is 10.0 kg at a distance of 28.0 cm from the knee joint, the moment of inertia of the lower leg is 0.900kg-m2 the muscle force is 1500 N, and its effective perpendicular lever arm is 3.00 cm. (b) How much work is done if the leg rotates through an angle of 20.0° with a constant force exerted by the muscle?arrow_forwardWhy is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that has the same mass and radius? Why is the moment of inertia of a spherical shell that has a mass M and a radius R greater than that of a solid sphere that has the same mass and radius?arrow_forward
- A carnival carousel accelerates nonuniformly from rest, moving through an angle of 8.60 rad in 6.00 s. If its turning at 3.30 rad/s at that time, find (a) its average angular speed, and (b) average angular acceleration during that time interval. (See Section 7.1.)arrow_forwardAn airliner lands with a speed of 50.0 m/s. Each wheel of the plane has a radius of 1.25 m and a moment of inertia of 110 kg m2. At touchdown, the wheels begin to spin under the action of friction. Each wheel supports a weight of 1.40 104 N, and the wheels attain their angular speed in 0.480 s while rolling without slipping. What is the coefficient of kinetic friction between the wheels and the runway? Assume that the speed of the plane is constant.arrow_forwardCalculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximately a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.arrow_forward
- A playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardIf global warming continues over the next one hundred years, it is likely that some polar ice will melt and the water will be distributed closer to the equator, (a) How would that change the moment of inertia of the Earth? (b) Would the duration of the day (one revolution) increase or decrease?arrow_forwardCalculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. b) The skater with arms extended is approximated by a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.arrow_forward
- Everyday application: Suppose a yo-yo has a center shaft that has a 0.250 cm radius and that its string is being pulled. (a) If the string is stationary and the yo-yo accelerates away from it at a rate of 1.50 m/s2, what is the angular acceleration of the yo-yo? (b) What is the angular velocity after 0.750 s if it starts from rest? (c) The outside radius of the yo-yo is 3.50 cm. What is the tangential acceleration of a point on its edge?arrow_forwardA 60.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 500 kg m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clock-wise (as viewed from above the system) at a constant speed of 1.50 m/s relative to Earth. (a) In what direction and with what angular speed does the turntable rotate? (b) How much work does the woman do to set herself and the turntable into motion?arrow_forwardTo find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration. In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h. Slum that the radius r of a given portion of the track is given by r=ri+h2 where ri is the radius of the innermost portion of the track and is the angle through which the disc turns to arrive at the location of the track of radius r. (b) Show that the rate of change of the angle is given by ddt=vri+(h/2) where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY