COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 68QAP
To determine

Sphere's speed at the bottom of the ramp.

Expert Solution & Answer
Check Mark

Answer to Problem 68QAP

  vs=3.86ms1

Explanation of Solution

Given info:

Uniform solid sphere of,

  Radius =r0=5cm

  Mass =m0=3.00kg

An inclined plane,

  Length =l0=2.00m

  Angle which tilted with horizontal plane =θ=25

Sphere rolls without slipping down the ramp.

Translational speed of sphere at the top of plane =vo=2.00ms1

Formula used:

Let's name the vertical height of the plane as h.

Let's name the angular velocity of sphere at the bottom of the ramp as ω.

Let's name the linear speed of sphere at the bottom of the ramp as vs

Let's name the moment of inertia of sphere as Is.

  g=10ms2.

Conservation of mechanical energy:

  Ki+Ui=Kf+Uf

Kinetic energy for an object that undergoes both translation and rotation:

  K=12Mv2s+12Isω2...(1)

Condition for rolling without slipping:

  vs=roω...(2)

Calculation:

Let's consider the motion of sphere,

Initially the sphere is at rest with translational kinetic energy, so Ki=12m0v02.

The initial gravitational potential energy is Ui=mogyi

Final gravitational potential energy is Uf=mogyf

Conservation of mechanical energy:

  Ki+Ui=Kf+Uf

  12m0v02+mogyi=Kf+mogyf

  Kf=mog(yiyf)+12m0v02

But, according to the data given,

  (yiyf)=h

So,

  Kf=mogh+12m0v02...(A)

Let's consider the kinetic energy (Kf) of sphere at the bottom of the ramp,

Kinetic energy is part translational and part rotational. We can use (2) equation to write ω

In terms of vs.

Using (1) expression,

Kinetic energy for an object that undergoes both translation and rotation:

  K=12Mv2s+12Isω2...(1)

  Kf=12mov2s+12Isω2

Condition for rolling without slipping:

  vs=roω...(2)

  ω=vsro

Substitute into kinetic energy equation:

  Kf=12mov2c+12Icω2

  Kf=12mov2s+12Is( v s r o )2

  Kf=12(mo+Isr02)vs2

From the general knowledge we know that moment of inertia of a sphere is 25m0ro2.

So, let's substitute the Is value in to the equation,

  Kf=12(mo+Isr02)vs2

  Kf=12(mo+( 2 5 m 0 r o 2 )ro2)vs2

  Kf=12(mo+25m0)vs2

  Kf=12(75m0)vs2

  Kf=710movs2...(B)

Since (A),(B) equations are equal,

  (A)=(B)

  mogh+12m0v02=710movs2

  gh+12v02=710vs2

  vs2=107(gh+12v02)

  vs=107(gh+12v02)

Let's substitute the values,

  vs=107(10ms 2*2.00msin 25+12 (2.00m s 1 )2)

  vs=107(8.452m2s 2+2.00m2s 2)

  vs=107(10.452m2s 2)

  vs=(14.931m2s 2)

  vs=3.86ms1

Conclusion:

Thus, sphere's speed at the bottom of the ramp is 3.86ms1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
need help part e
Critical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible.  Experiment with changing c to find the critical damping constant.  Use the same initial conditions as in the last problem.  Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.
NASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…

Chapter 8 Solutions

COLLEGE PHYSICS

Ch. 8 - Prob. 11QAPCh. 8 - Prob. 12QAPCh. 8 - Prob. 13QAPCh. 8 - Prob. 14QAPCh. 8 - Prob. 15QAPCh. 8 - Prob. 16QAPCh. 8 - Prob. 17QAPCh. 8 - Prob. 18QAPCh. 8 - Prob. 19QAPCh. 8 - Prob. 20QAPCh. 8 - Prob. 21QAPCh. 8 - Prob. 22QAPCh. 8 - Prob. 23QAPCh. 8 - Prob. 24QAPCh. 8 - Prob. 25QAPCh. 8 - Prob. 26QAPCh. 8 - Prob. 27QAPCh. 8 - Prob. 28QAPCh. 8 - Prob. 29QAPCh. 8 - Prob. 30QAPCh. 8 - Prob. 31QAPCh. 8 - Prob. 32QAPCh. 8 - Prob. 33QAPCh. 8 - Prob. 34QAPCh. 8 - Prob. 35QAPCh. 8 - Prob. 36QAPCh. 8 - Prob. 37QAPCh. 8 - Prob. 38QAPCh. 8 - Prob. 39QAPCh. 8 - Prob. 40QAPCh. 8 - Prob. 41QAPCh. 8 - Prob. 42QAPCh. 8 - Prob. 43QAPCh. 8 - Prob. 44QAPCh. 8 - Prob. 45QAPCh. 8 - Prob. 46QAPCh. 8 - Prob. 47QAPCh. 8 - Prob. 48QAPCh. 8 - Prob. 49QAPCh. 8 - Prob. 50QAPCh. 8 - Prob. 51QAPCh. 8 - Prob. 52QAPCh. 8 - Prob. 53QAPCh. 8 - Prob. 54QAPCh. 8 - Prob. 55QAPCh. 8 - Prob. 56QAPCh. 8 - Prob. 57QAPCh. 8 - Prob. 58QAPCh. 8 - Prob. 59QAPCh. 8 - Prob. 60QAPCh. 8 - Prob. 61QAPCh. 8 - Prob. 62QAPCh. 8 - Prob. 63QAPCh. 8 - Prob. 64QAPCh. 8 - Prob. 65QAPCh. 8 - Prob. 66QAPCh. 8 - Prob. 67QAPCh. 8 - Prob. 68QAPCh. 8 - Prob. 69QAPCh. 8 - Prob. 70QAPCh. 8 - Prob. 71QAPCh. 8 - Prob. 72QAPCh. 8 - Prob. 73QAPCh. 8 - Prob. 74QAPCh. 8 - Prob. 75QAPCh. 8 - Prob. 76QAPCh. 8 - Prob. 77QAPCh. 8 - Prob. 78QAPCh. 8 - Prob. 79QAPCh. 8 - Prob. 80QAPCh. 8 - Prob. 81QAPCh. 8 - Prob. 82QAPCh. 8 - Prob. 83QAPCh. 8 - Prob. 84QAPCh. 8 - Prob. 85QAPCh. 8 - Prob. 86QAPCh. 8 - Prob. 87QAPCh. 8 - Prob. 88QAPCh. 8 - Prob. 89QAPCh. 8 - Prob. 90QAPCh. 8 - Prob. 91QAPCh. 8 - Prob. 92QAPCh. 8 - Prob. 93QAPCh. 8 - Prob. 94QAPCh. 8 - Prob. 95QAPCh. 8 - Prob. 96QAPCh. 8 - Prob. 97QAPCh. 8 - Prob. 98QAPCh. 8 - Prob. 99QAPCh. 8 - Prob. 100QAPCh. 8 - Prob. 101QAPCh. 8 - Prob. 102QAPCh. 8 - Prob. 103QAPCh. 8 - Prob. 104QAPCh. 8 - Prob. 105QAPCh. 8 - Prob. 106QAPCh. 8 - Prob. 107QAPCh. 8 - Prob. 108QAPCh. 8 - Prob. 109QAPCh. 8 - Prob. 110QAPCh. 8 - Prob. 111QAPCh. 8 - Prob. 112QAPCh. 8 - Prob. 113QAPCh. 8 - Prob. 114QAPCh. 8 - Prob. 115QAPCh. 8 - Prob. 116QAPCh. 8 - Prob. 117QAPCh. 8 - Prob. 118QAPCh. 8 - Prob. 119QAPCh. 8 - Prob. 120QAPCh. 8 - Prob. 121QAPCh. 8 - Prob. 122QAPCh. 8 - Prob. 123QAPCh. 8 - Prob. 124QAPCh. 8 - Prob. 125QAPCh. 8 - Prob. 126QAPCh. 8 - Prob. 127QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY