COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 31QAP
To determine
The moment of inertia if large ring is twirled around your finger
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
COLLEGE PHYSICS
Ch. 8 - Prob. 1QAPCh. 8 - Prob. 2QAPCh. 8 - Prob. 3QAPCh. 8 - Prob. 4QAPCh. 8 - Prob. 5QAPCh. 8 - Prob. 6QAPCh. 8 - Prob. 7QAPCh. 8 - Prob. 8QAPCh. 8 - Prob. 9QAPCh. 8 - Prob. 10QAP
Ch. 8 - Prob. 11QAPCh. 8 - Prob. 12QAPCh. 8 - Prob. 13QAPCh. 8 - Prob. 14QAPCh. 8 - Prob. 15QAPCh. 8 - Prob. 16QAPCh. 8 - Prob. 17QAPCh. 8 - Prob. 18QAPCh. 8 - Prob. 19QAPCh. 8 - Prob. 20QAPCh. 8 - Prob. 21QAPCh. 8 - Prob. 22QAPCh. 8 - Prob. 23QAPCh. 8 - Prob. 24QAPCh. 8 - Prob. 25QAPCh. 8 - Prob. 26QAPCh. 8 - Prob. 27QAPCh. 8 - Prob. 28QAPCh. 8 - Prob. 29QAPCh. 8 - Prob. 30QAPCh. 8 - Prob. 31QAPCh. 8 - Prob. 32QAPCh. 8 - Prob. 33QAPCh. 8 - Prob. 34QAPCh. 8 - Prob. 35QAPCh. 8 - Prob. 36QAPCh. 8 - Prob. 37QAPCh. 8 - Prob. 38QAPCh. 8 - Prob. 39QAPCh. 8 - Prob. 40QAPCh. 8 - Prob. 41QAPCh. 8 - Prob. 42QAPCh. 8 - Prob. 43QAPCh. 8 - Prob. 44QAPCh. 8 - Prob. 45QAPCh. 8 - Prob. 46QAPCh. 8 - Prob. 47QAPCh. 8 - Prob. 48QAPCh. 8 - Prob. 49QAPCh. 8 - Prob. 50QAPCh. 8 - Prob. 51QAPCh. 8 - Prob. 52QAPCh. 8 - Prob. 53QAPCh. 8 - Prob. 54QAPCh. 8 - Prob. 55QAPCh. 8 - Prob. 56QAPCh. 8 - Prob. 57QAPCh. 8 - Prob. 58QAPCh. 8 - Prob. 59QAPCh. 8 - Prob. 60QAPCh. 8 - Prob. 61QAPCh. 8 - Prob. 62QAPCh. 8 - Prob. 63QAPCh. 8 - Prob. 64QAPCh. 8 - Prob. 65QAPCh. 8 - Prob. 66QAPCh. 8 - Prob. 67QAPCh. 8 - Prob. 68QAPCh. 8 - Prob. 69QAPCh. 8 - Prob. 70QAPCh. 8 - Prob. 71QAPCh. 8 - Prob. 72QAPCh. 8 - Prob. 73QAPCh. 8 - Prob. 74QAPCh. 8 - Prob. 75QAPCh. 8 - Prob. 76QAPCh. 8 - Prob. 77QAPCh. 8 - Prob. 78QAPCh. 8 - Prob. 79QAPCh. 8 - Prob. 80QAPCh. 8 - Prob. 81QAPCh. 8 - Prob. 82QAPCh. 8 - Prob. 83QAPCh. 8 - Prob. 84QAPCh. 8 - Prob. 85QAPCh. 8 - Prob. 86QAPCh. 8 - Prob. 87QAPCh. 8 - Prob. 88QAPCh. 8 - Prob. 89QAPCh. 8 - Prob. 90QAPCh. 8 - Prob. 91QAPCh. 8 - Prob. 92QAPCh. 8 - Prob. 93QAPCh. 8 - Prob. 94QAPCh. 8 - Prob. 95QAPCh. 8 - Prob. 96QAPCh. 8 - Prob. 97QAPCh. 8 - Prob. 98QAPCh. 8 - Prob. 99QAPCh. 8 - Prob. 100QAPCh. 8 - Prob. 101QAPCh. 8 - Prob. 102QAPCh. 8 - Prob. 103QAPCh. 8 - Prob. 104QAPCh. 8 - Prob. 105QAPCh. 8 - Prob. 106QAPCh. 8 - Prob. 107QAPCh. 8 - Prob. 108QAPCh. 8 - Prob. 109QAPCh. 8 - Prob. 110QAPCh. 8 - Prob. 111QAPCh. 8 - Prob. 112QAPCh. 8 - Prob. 113QAPCh. 8 - Prob. 114QAPCh. 8 - Prob. 115QAPCh. 8 - Prob. 116QAPCh. 8 - Prob. 117QAPCh. 8 - Prob. 118QAPCh. 8 - Prob. 119QAPCh. 8 - Prob. 120QAPCh. 8 - Prob. 121QAPCh. 8 - Prob. 122QAPCh. 8 - Prob. 123QAPCh. 8 - Prob. 124QAPCh. 8 - Prob. 125QAPCh. 8 - Prob. 126QAPCh. 8 - Prob. 127QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rope of negligible mass is wrapped around a 225 kg solid cylinder of radius 0.400 m. The cylinder is suspended several meters off the ground with its axis oriented horizontally, and turns on that axis without friction, (a) If a 75.0-kg man takes hold of the free end of the rope and falls under the force of gravity, what is his acceleration? (b) What is the angular acceleration of the cylinder? (c) if the mass of the rope were not neglected, what would happen to the angular acceleration of the cylinder as the man falls?arrow_forwardThe angular position of a rod varies as 20.0t2radians from time t=0 . The rod has two beads on it as shown in the following figure, one at 10 cm from the ratation axis and the other at 20 cm from the rotation axis. (a) What is the instantaneous angular velocity of the rod at t=5s ? (b) What is the angular acceleration of the rod? (c) What are the tangential speeds of the beads at t=5s ? (d) What are the tangential acceleration of the beads at t=5s ? (e) What are the centripetal accelerations of the beads at t=5s ?arrow_forwardThe dung beetle is known as one of the strongest animals for its size, often forming balls of dung up to 10 times their own mass and rolling them to locations where they can be buried and stored as food. A typical dung ball formed by the species K. nigroaeneus has a radius of 2.00 cm and is rolled by the beetle at 6.25 cm/s. (a) What is the rolling balls angular speed? (b) How many full rotations are required if the beetle rolls the ball a distance of 1.00 m?arrow_forward
- Integrated Concepts An ultracentrifuge accelerates from rest to 100,000 rpm in 2.00 min. (a) What is its angular acceleration in rad/s2? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the radial acceleration in m/s2 and multiples of g of this point at full rpm?arrow_forwardA proton is accelerated in a cyclotron to 5.0106m/s in 0.01 s. The proton follows a circular path. If the radius of the cyclotron is 0.5 km, (a) What is the angular momentum of the proton about the center at its maximum speed? (b) What is the torque on the proton about the center as it accelerates to maximum speed?arrow_forwardAn electric sander consisting of a rotating disk of mass 0.7 kg and radius 10 cm rotates at 15 rev/sec. When applied to a rough wooden wall the rotation rate decreases by 20 . (a) What is the final rotational kinetic energy of the rotating disk? (a) How much has its rotational kinetic energy decreased?arrow_forward
- Gravity is an example of a central force that acts along the line connecting two spherical masses. As a planet orbits its sun, (a) how much torque does the suns gravitational force exert on the planet? (b) What is the change in the planets orbital angular momentum?arrow_forwardA system of point particles is rotating about a fixed axis at 4 rev/s. The particles are fixed with respect to each other. The masses and distances to the axis of the point particles are m1=0.1kg , r1=0.2m , m2=0.05kg , r2=0.4m , m3=0.5kg , r3=0.01m . (a) What is the moment of inertia of the system? (b) What is the rotational kinetic energy of the system?arrow_forwardFigure OQ10.6 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis, (d) The moment of inertia is the same small value for two axes, (e) The moment of inertia is the same for all three axes.arrow_forward
- During a 6.0-s time interval, a fly-wheel with a constant angular acceleration turns through 500 radians that acquire an angular velocity of 100 rad/s. (a) What is the angular velocity at the beginning of the 6.0 s? (b) What is the angular acceleration of the fly-wheel?arrow_forwardA 4.0-kg particle moves in a circle of radius 2.0 m. The angular momentum of the particle varies in time according to l=5.0t2 , (a) What is the torque on the particle about the center of the circle at t=3.4s ? (b) What is the angular velocity of the particle at t=3.4s ?arrow_forwardA bug of mass 0.020 kg is at rest on the edge of a solid cylindrical disk (M=0.10kg,R=0.10m) rotating in a horizontal plane around the vertical axis through its center. The disk is rotating at 10.0 rad/s. The bug crawls to the center of the disk. (a) What is the new angular velocity of the disk? (b) What is the change in the kinetic energy of the system? (c) If the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk then? (d) What is the new kinetic energy of the system? (e) What is the cause of the increase and decrease of kinetic energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY