Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8PCE
A mass is attached to the bottom of a vertical spring. This causes the spring to stretch and the mass to move downward. (a) Does the potential energy of the spring increase, decrease, or stay the same during this process? Explain. (b) Does the gravitational potential energy of the Earth-mass system increase, decrease, or stay the same during this process? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 8.1 - 1. In Figure 8-8, the work done by a conservative...Ch. 8.2 - 1. The work done by a conservative force on a...Ch. 8.3 - A system with only conservative forces acting on...Ch. 8.4 - 4. A system is acted on by more than one force,...Ch. 8.5 - A system consists of an object moving along the x...Ch. 8 - Is it possible for the kinetic energy of an object...Ch. 8 - If the stretch of a spring is doubled, the force...Ch. 8 - When a mass is placed on top of a vertical spring,...Ch. 8 - If a spring is stretched so far that it is...Ch. 8 - An object is thrown upward to a person on a roof....
Ch. 8 - It is a law of nature that the total energy of the...Ch. 8 - Discuss the venous energy conversions that occur...Ch. 8 - Discuss the nature of the work done by the...Ch. 8 - It the force on an object is zero, does that mean...Ch. 8 - When a ball is thrown upward, its mechanical...Ch. 8 - When a ball is thrown upward, it spends the same...Ch. 8 - The work done by a conservative force is indicated...Ch. 8 - 2. Calculate the work done by gravity as a 3.2-kg...Ch. 8 - Calculate the work done by friction as a 37-kg box...Ch. 8 - Predict/Calculate A 2.8-kg block is attached to a...Ch. 8 - Predict/Calculate (a) Calculate the work done by...Ch. 8 - In the system shown in Figure 8-26, suppose the...Ch. 8 - Predict/Explain Ball 1 is thrown to the ground...Ch. 8 - A mass is attached to the bottom of a vertical...Ch. 8 - Find the gravitational potential energy of an...Ch. 8 - A student lifts a 1.42-kg book from her desk to a...Ch. 8 - At the local ski slope, an 82.0-kg skier rides a...Ch. 8 - BIO The Wing of the Hawkmoth Experiments performed...Ch. 8 - Predict/Calculate A vertical spring stores 0.962 J...Ch. 8 - Pushing on the pump of a soap dispenser compresses...Ch. 8 - BIO Mantis Shrimp Smasher A peacock mantis shrimp...Ch. 8 - Predict/Calculate The work required to stretch a...Ch. 8 - A 0.33-kg pendulum bob is attached to a string 1.2...Ch. 8 - Prob. 18PCECh. 8 - Prob. 19PCECh. 8 - For an object moving along the x axis, the...Ch. 8 - At an amusement park, a swimmer uses a water side...Ch. 8 - Prob. 22PCECh. 8 - A skateboarder at a skate park rides along the...Ch. 8 - Three balls are thrown upward with the same...Ch. 8 - A 0.21-kg apple falls from a tree to the ground,...Ch. 8 - Predict/Calculate A 2.9-kg block slides with a...Ch. 8 - A 0.26-kg rock is thrown vertically upward from...Ch. 8 - A 1 40-kg block sides with a speed of 0.950 m/s on...Ch. 8 - A 5.76-kg rock is dropped and allowed to fall...Ch. 8 - Predict/Calculate Suppose the pendulum bob m...Ch. 8 - The two masses in the Atwoods machine shown in...Ch. 8 - In the previous problem, suppose the masses have...Ch. 8 - Prob. 33PCECh. 8 - Catching a wave, a 77-kg surfer starts with a...Ch. 8 - At a playground, a 19-kg child plays on a slide...Ch. 8 - Starting at rest at the edge of a swimming pool, a...Ch. 8 - A 22,000-kg airplane lands with a speed of 64 m/s...Ch. 8 - A78-kg skateboarder grinds down a hubba ledge that...Ch. 8 - You ride your bicycle down a hill, maintaining a...Ch. 8 - A 111-kg seal at an amusement park slides from...Ch. 8 - A 1.9-kg rock is released from rest at the surface...Ch. 8 - A 1250-kg car drives up a hill that is 16.2 m...Ch. 8 - The Outlaw Run roller coaster in Branson,...Ch. 8 - A 1.80-kg block slides on a rough horizontal...Ch. 8 - Figure 8-34 shows a potential energy curve as a...Ch. 8 - An object moves along the x axis, subject to the...Ch. 8 - A 1.34-kg object moves along the x axis, subject...Ch. 8 - The potential energy of a particle moving along...Ch. 8 - A block of mass m = 0.88 kg is connected to a...Ch. 8 - A ball of mass m = 0.75 kg is thrown straight...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - CE You and a friend both solve a problem involving...Ch. 8 - CE A particle moves under the influence of a...Ch. 8 - A sled slides without friction down a small,...Ch. 8 - A 74 Kg skier encounters a dip in the snows...Ch. 8 - Running Shoes The soles of a popular make of...Ch. 8 - Nasal Strips The force required to flex a nasal...Ch. 8 - The water slide shown in Figure 8-37 ends at a...Ch. 8 - A skateboarder starts at point A in Figure 8-38...Ch. 8 - The Crash of Skylab NASAs Skylab, the largest...Ch. 8 - BIO Bird Tendons Several studies indicate that the...Ch. 8 - In the Atwoods machine of Problem 31, the mass m2...Ch. 8 - A 6.60-kg block slides with an initial speed of...Ch. 8 - Jeff of the Jungle swings on a 7.6-m vine that...Ch. 8 - A 1.9-kg block slides down a frictionless ramp, as...Ch. 8 - Suppose the ramp in Figure 8-40 is not motionless....Ch. 8 - BIO Compressing the Ground A running track at...Ch. 8 - BIO A Fleas Jump The resilin in the body of a flea...Ch. 8 - Predict/Calculate Tension at the Bottom A ball of...Ch. 8 - An ice cube is placed on top of an overturned...Ch. 8 - Predict/Calculate The two blocks shown in Figure...Ch. 8 - Predict/Calculate Loop-the-Loop (a) A block of...Ch. 8 - Figure 8-45 shows a 1.75-kg block at rest on a...Ch. 8 - In Figure 8-45 a 1.2-kg block is held at rest...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - Predict/Calculate Referring to Example 8-12...Ch. 8 - Referring to Example 8-12 Suppose the block is...Ch. 8 - Referring to Example 8-17 suppose we would like...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. About how old is the solar system? (a)...
Cosmic Perspective Fundamentals
25. A Thomson's gazelle can reach a speed of 13 m/s in 3.0 s. A lion can reach a speed of 9.5 m/s in 1.0 s. A t...
College Physics: A Strategic Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forward(a) Can the kinetic energy of a system be negative? (b) Can the gravitational potential energy of a system be negative? Explain.arrow_forwardAs a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance, (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulums motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.arrow_forward
- A block of mass 200 g is attached at the end of a massless spring of spring constant 50 N/m. The other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the block at the midpoint of its descent?arrow_forwardA block of mass m = 5.00 kg is released from point and slides on the frictionless track shown in Figure P8.3. Determine (a) the blocks speed at points and and (b) the net work done by the gravitational force on the block as it moves from point to point . Figure P8.3arrow_forwardPhysics Review A team of huskies performs 7 440 J of work on a loaded sled of mass 124 kg, drawing it from rest up a 4.60-m high snow-covered rise while the sled loses 1 520 J due to friction, (a) What is the net work done on the sled by the huskies and friction? (b) What is the change in the sleds potential energy? (c) What is the speed of the sled at the top of the rise? (See Section 5.5.)arrow_forward
- A particle moves in one dimension under the action of a conservative force. The potential energy of the system is given by the graph in Figure P8.55. Suppose the particle is given a total energy E, which is shown as a horizontal line on the graph. a. Sketch bar charts of the kinetic and potential energies at points x = 0, x = x1, and x = x2. b. At which location is the particle moving the fastest? c. What can be said about the speed of the particle at x = x3? FIGURE P8.55arrow_forwardThe chin-up is one exercise that can be used to strengthen the biceps muscle. This muscle can exert a force of approximately 8.00 102 N as it contracts a distance of 7.5 cm in a 75-kg male.3 (a) How much work can the biceps muscles (one in each arm) perform in a single contraction? (b) Compare this amount of work with the energy required to lift a 75-kg person 40. cm in performing a chin-up. (c) Do you think the biceps muscle is the only muscle involved in performing a chin-up?arrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forward
- A jack-in-the-box is actually a system that consists of an object attached to the top of a vertical spring (Fig. P8.50). a. Sketch the energy graph for the potential energy and the total energy of the springobject system as a function of compression distance x from x = xmax to x = 0, where xmax is the maximum amount of compression of the spring. Ignore the change in gravitational potential energy. b. Sketch the kinetic energy of the system between these points the two distances in part (a)on the same graph (using a different color). FIGURE P8.50 Problems 50 and 79arrow_forwardA shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?arrow_forwardOne person drops a ball from the top of a building while another person at the bottom observes its motion. Will these two people agree (a) on the value of the gravitational potential energy of the ball-Earth system? (b) On the change in potential energy? (c) On the kinetic energy of the ball at some point in its motion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY