Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 11CQ
When a ball is thrown upward, it spends the same amount of time on the way up as on the way down—as long as air resistance can be ignored. It air resistance is taken into account, is the time on the way down the same as, greater than, or less than the time on the way up? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Viper roller coaster at Great America starts at a height of 30 m with a velocity of 3 m/sec. A) How fast is the car going when it reaches the ground after that first hill? B) A later hill is only 10 m high. How fast is the car going when it gets to the top of the second hill? Assume there is no friction on the track.
a) 1.9 m
b) 52 m
c) 2.7 m
d) 5.1 m
e) 2.2 m
How long will a vacuum cleaner (800 W) runs on 4x107 J of energy?
a.) 13 hrs 30 min 51 sec
b.) 13 hrs 45 min 44 sec
c.) 13 hrs 53 min 20 sec
d.) 13 hrs 54 min 14 sec
Chapter 8 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 8.1 - 1. In Figure 8-8, the work done by a conservative...Ch. 8.2 - 1. The work done by a conservative force on a...Ch. 8.3 - A system with only conservative forces acting on...Ch. 8.4 - 4. A system is acted on by more than one force,...Ch. 8.5 - A system consists of an object moving along the x...Ch. 8 - Is it possible for the kinetic energy of an object...Ch. 8 - If the stretch of a spring is doubled, the force...Ch. 8 - When a mass is placed on top of a vertical spring,...Ch. 8 - If a spring is stretched so far that it is...Ch. 8 - An object is thrown upward to a person on a roof....
Ch. 8 - It is a law of nature that the total energy of the...Ch. 8 - Discuss the venous energy conversions that occur...Ch. 8 - Discuss the nature of the work done by the...Ch. 8 - It the force on an object is zero, does that mean...Ch. 8 - When a ball is thrown upward, its mechanical...Ch. 8 - When a ball is thrown upward, it spends the same...Ch. 8 - The work done by a conservative force is indicated...Ch. 8 - 2. Calculate the work done by gravity as a 3.2-kg...Ch. 8 - Calculate the work done by friction as a 37-kg box...Ch. 8 - Predict/Calculate A 2.8-kg block is attached to a...Ch. 8 - Predict/Calculate (a) Calculate the work done by...Ch. 8 - In the system shown in Figure 8-26, suppose the...Ch. 8 - Predict/Explain Ball 1 is thrown to the ground...Ch. 8 - A mass is attached to the bottom of a vertical...Ch. 8 - Find the gravitational potential energy of an...Ch. 8 - A student lifts a 1.42-kg book from her desk to a...Ch. 8 - At the local ski slope, an 82.0-kg skier rides a...Ch. 8 - BIO The Wing of the Hawkmoth Experiments performed...Ch. 8 - Predict/Calculate A vertical spring stores 0.962 J...Ch. 8 - Pushing on the pump of a soap dispenser compresses...Ch. 8 - BIO Mantis Shrimp Smasher A peacock mantis shrimp...Ch. 8 - Predict/Calculate The work required to stretch a...Ch. 8 - A 0.33-kg pendulum bob is attached to a string 1.2...Ch. 8 - Prob. 18PCECh. 8 - Prob. 19PCECh. 8 - For an object moving along the x axis, the...Ch. 8 - At an amusement park, a swimmer uses a water side...Ch. 8 - Prob. 22PCECh. 8 - A skateboarder at a skate park rides along the...Ch. 8 - Three balls are thrown upward with the same...Ch. 8 - A 0.21-kg apple falls from a tree to the ground,...Ch. 8 - Predict/Calculate A 2.9-kg block slides with a...Ch. 8 - A 0.26-kg rock is thrown vertically upward from...Ch. 8 - A 1 40-kg block sides with a speed of 0.950 m/s on...Ch. 8 - A 5.76-kg rock is dropped and allowed to fall...Ch. 8 - Predict/Calculate Suppose the pendulum bob m...Ch. 8 - The two masses in the Atwoods machine shown in...Ch. 8 - In the previous problem, suppose the masses have...Ch. 8 - Prob. 33PCECh. 8 - Catching a wave, a 77-kg surfer starts with a...Ch. 8 - At a playground, a 19-kg child plays on a slide...Ch. 8 - Starting at rest at the edge of a swimming pool, a...Ch. 8 - A 22,000-kg airplane lands with a speed of 64 m/s...Ch. 8 - A78-kg skateboarder grinds down a hubba ledge that...Ch. 8 - You ride your bicycle down a hill, maintaining a...Ch. 8 - A 111-kg seal at an amusement park slides from...Ch. 8 - A 1.9-kg rock is released from rest at the surface...Ch. 8 - A 1250-kg car drives up a hill that is 16.2 m...Ch. 8 - The Outlaw Run roller coaster in Branson,...Ch. 8 - A 1.80-kg block slides on a rough horizontal...Ch. 8 - Figure 8-34 shows a potential energy curve as a...Ch. 8 - An object moves along the x axis, subject to the...Ch. 8 - A 1.34-kg object moves along the x axis, subject...Ch. 8 - The potential energy of a particle moving along...Ch. 8 - A block of mass m = 0.88 kg is connected to a...Ch. 8 - A ball of mass m = 0.75 kg is thrown straight...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - CE You and a friend both solve a problem involving...Ch. 8 - CE A particle moves under the influence of a...Ch. 8 - A sled slides without friction down a small,...Ch. 8 - A 74 Kg skier encounters a dip in the snows...Ch. 8 - Running Shoes The soles of a popular make of...Ch. 8 - Nasal Strips The force required to flex a nasal...Ch. 8 - The water slide shown in Figure 8-37 ends at a...Ch. 8 - A skateboarder starts at point A in Figure 8-38...Ch. 8 - The Crash of Skylab NASAs Skylab, the largest...Ch. 8 - BIO Bird Tendons Several studies indicate that the...Ch. 8 - In the Atwoods machine of Problem 31, the mass m2...Ch. 8 - A 6.60-kg block slides with an initial speed of...Ch. 8 - Jeff of the Jungle swings on a 7.6-m vine that...Ch. 8 - A 1.9-kg block slides down a frictionless ramp, as...Ch. 8 - Suppose the ramp in Figure 8-40 is not motionless....Ch. 8 - BIO Compressing the Ground A running track at...Ch. 8 - BIO A Fleas Jump The resilin in the body of a flea...Ch. 8 - Predict/Calculate Tension at the Bottom A ball of...Ch. 8 - An ice cube is placed on top of an overturned...Ch. 8 - Predict/Calculate The two blocks shown in Figure...Ch. 8 - Predict/Calculate Loop-the-Loop (a) A block of...Ch. 8 - Figure 8-45 shows a 1.75-kg block at rest on a...Ch. 8 - In Figure 8-45 a 1.2-kg block is held at rest...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - Predict/Calculate Referring to Example 8-12...Ch. 8 - Referring to Example 8-12 Suppose the block is...Ch. 8 - Referring to Example 8-17 suppose we would like...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. a. How long (in ns) does it take light to travel 1.0 min a vacuum?
b. What distance does light travel in wat...
College Physics: A Strategic Approach (3rd Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The enzyme that catalyzes the C C bond cleavage reaction that converts serine to glycine removes the substitue...
Organic Chemistry (8th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding You probably recall that, neglecting air resistance, if you throw a projectile straight up, the time ii takes to reach its maximum height equals the time it takes to fall from the maximum height back to the starting height. Suppose you cannot neglect air resistance, as in Example 8.8. Is the time the projectile takes to go up (a) greater than, (b) less than, or (c) equal to the time It takes to come back down? Explain.arrow_forwardA bungee cord is essentially a very long rubber band that can stretch up to four times its unstretched length. However, its spring constant vanes over its stretch [see Menz, P.G. “The Physics of Bungee Jumping.” The Physics Teacher (November 1993) 31: 483-487]. Take the length of the cord to be along the direction and define the stretch as the length of the cord minus its un-stretched length that is, (see below). Suppose a particular bungee cord has a spring constant, for of and for. (Recall that the of (Recall that the spring constant is the slope of the force versus its stretch (a) What is the tension in the cord when the stretch is 16.7 m (the maximum desired for a given jump)? (b) How much work must be done against the elastic force of the bungee cord to stretch It 16.7 m? Figure 7.16 (credit modification of work by Graeme Churchard)arrow_forwardIn Example 7.7, we found that the speed of a roller coaster that had descended 20.0 m was only slightly greater when it had an initial speed of 5.00 m/s than when it started from rest. This implies that PEKEi. Confirm this statement by taking the ratio of PE to KEi. (Note that mass cancels.)arrow_forward
- Problem A moving electron has a Kinetic Energy Kq. After a net amount of work is done on it, the electron is moving one-quarter as fast in the opposite direction. What is the work done Win terms of Kq? Solution To solve for the work done, first we must determine what is the final kinetic energy of the electron. By concept, we know that K1=(1/2)mv21 K2=(1/2)mv2 But it was mentioned that: v2=( so, K2 in terms of vq is K2=( )mv²1 Substituting the expression for K1 results to K2=( K1 Since work done is W=AK=K -K Evaluating results to W=( K1arrow_forwardQ23.) A boy of mass 50 kg runs up a staircase of 45 steps in 9 s. If the height of each step is 15 cm, find his power. Take g=10ms−2.arrow_forwardIf the frictional resistance at any velocity is 45 N/ton, and if the change in speed is accomplished in a length of 100 m, a is work done on a level track in bringing the velocity of a train weighing 200 metric tons from zero to 48 km/hr If the track were a 1% upgrade, what would be the additional work to be done? In kN-marrow_forward
- A man on a motorcycle plans to make a jump as shown in the figure. If he leaves the ramp with a speed of 30.0 m/s and has a speed of 28.4 m/s at the top of his trajectory, determine his maximum height (h) (in m) above the end of the ramp. Ignore friction and air resistance. ורוarrow_forwardIt's given the Kinetic energy formula: KE=1/2 mv2 How to solve for v?arrow_forwardProblem A moving electron has a Kinetic Energy K1. After a net amount of work is done on it, the electron is moving one-quarter as fast in the opposite direction. What is the work done Win terms of K1? Solution To solve for the work done, first we must determine what is the final kinetic energy of the electron. By concept, we know that K1=(1/2)mv²1 K2=(1/2)my2 But it was mentioned that: v2=( v1 so, K2 in terms of v1 is K2=( )mv², Substituting the expression for K1 results to K2=( Since work done is W=AK=K -K Evaluating results to W=( K1arrow_forward
- An electric car can go 150 km on a test track at a constant speed of 100 km/hr on one charge of its batteries. The test track is an oval with no stops or other cars. You can assume that air resistance is the only form of friction. How far can it go on the test track if it moves at a constant speed of 50 km/hr?arrow_forwardCalculate the work done by the force F→ when the car moves from x = 0 to x = 3.0 m. Calculate the work done by the force F→ when the car moves from x = 3.0 m to x = 4.0 m. Calculate the work done by the force F→ when the car moves from x = 4.0 m to x = 7.0 m.arrow_forwardQ9: A person trying to lose weight by burning fat lifts a mass of 10 kg up to a height of 1 m 1000 times. Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work done only when the weight is lifted up? Fat supplies 3.8 X 10' J of energy per kg which is converted to mechanical energy with a 20% efficiency rate. Takeg= 9.8 m/s (a) 12.89 X 10 kg (b) 2.45 X 10 kg (c) 6.45 X 10 kg (d) 9.89 X 10 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY