(a)
Interpretation:
The ions
Concept introduction:
The cation is an ionic species with a positive charge. It has more protons as compared to electrons so the net charge on the cations is positive. Its
The anion is an ionic species with a negative charge. It has more electrons than protons so the net charge on the anions is negative. Its symbol is the element with a superscript of the negative charge.
In general, cations are smaller than anions because the number of shells decreases after the loss of electrons in case of cations.
In the case of isoelectronic species, the size of cations decreases with an increase in positive charge and size of anion increases with an increase in a negative charge.
(b)
Interpretation:
The ions
Concept introduction:
The cation is an ionic species with a positive charge. It has more protons as compared to electrons so the net charge on the cations is positive. Its symbol is the element with a superscript of the positive charge.
The anion is an ionic species with a negative charge. It has more electrons than protons so the net charge on the anions is negative. Its symbol is the element with a superscript of the negative charge.
In general, cations are smaller than anions because the number of shells decreases after the loss of electrons in case of cations.
In the case of isoelectronic species, the size of cations decreases with an increase in positive charge and size of anion increases with an increase in a negative charge.
(c)
Interpretation:
The ions
Concept introduction:
The cation is an ionic species with a positive charge. It has more protons as compared to electrons so the net charge on the cations is positive. Its symbol is the element with a superscript of the positive charge.
The anion is an ionic species with a negative charge. It has more electrons than protons so the net charge on the anions is negative. Its symbol is the element with a superscript of the negative charge.
In general, cations are smaller than anions because the number of shells decreases after the loss of electrons in case of cations.
In the case of isoelectronic species, the size of cations decreases with an increase in positive charge and size of anion increases with an increase in a negative charge.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
- please helparrow_forwardPredict the products of the following reactions. Draw mechanism arrows for each step for a, b, and c. a.) HBr b.) HI H₂O H2SO4 d.) C12 HO H2SO4 1.) BH3 2.) H2O2, NaOHarrow_forwardK for the following reaction is 0.11 at constant temperature. If the equilibrium concentration of HCl is 0.5 M, what is the equilibrium concentration of NH3. NH4CI(s) ⇌ NH3(g) + HCI(g)arrow_forward
- please help by Draw the following structures (Lewis or line-angle drawing).arrow_forwardplease helparrow_forwardConsider the reaction: 2 A (aq) ⇌ B(aq) Given the following KC values and starting with the initial concentration of A = 4.00 M, complete ICE diagram(s)and find the equilibrium concentrations for A and B.A) KC = 4.00B) KC = 200C) KC = 8.00 x10-3arrow_forward
- 5) Consider the reaction: Cl2 (g) + F2 (g) ⟷ 2 ClF (g) KP=? The partial pressure of 203 kPa for Cl2 and a partial pressure of 405 kPa for F2. Upon reaching equilibrium, thepartial pressure of ClF is 180 kPa. Calculate the equilibrium concentrations and then find the value for KP.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





