Concept explainers
(a)
Interpretation: The pH of the solution before addition of KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(a)
Explanation of Solution
Before KOH is added, the pH of the solution depends on concentration of acid.
The first dissociation of
The given concentration of
The first acid dissociation constant can be represented as follows:
Or,
On solving,
This is the concentration of hydrogen ion in the solution. Thus, pH can be calculated as follows:
(b)
Interpretation: The pH of the solution after addition of 10 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(b)
Explanation of Solution
The number of moles of
Now, hydroxide ion will react with
Thus,
Thus, the amount of
The total volume will be 110 mL thus, concentration can be calculated as follows:
The ICE table can be prepared as follows:
The equilibrium expression can be represented as follows:
Or,
On solving,
The pH of the solution will be:
(c)
Interpretation: The pH of the solution after addition of 25 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(c)
Explanation of Solution
The molar amount of hydroxide ion initially present can be calculated as follows:
The reaction of hydroxide ion and H3X to produce
Thus, the amount of H3X left can be calculated as follows:
The concentration of H3X is equal to concentration of
(d)
Interpretation: The pH of the solution after addition of 50 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(d)
Explanation of Solution
The number of moles of hydroxide ion can be calculated as follows:
The hydrogen ion reacts with H3X and the amount is equal to that of hydroxide ion.
The remaining amount of H3X will be:
Now, all the acid exists as
The pH can be calculated as follows:
(e)
Interpretation: The pH of the solution after addition of 60 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(e)
Explanation of Solution
The number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
The amount of
The molarity can be calculated as follows:
Also, the molarity of
The ICE table can be prepared as follows:
The expression for
The
This is the concentration of hydrogen ion.
The pH value can be calculated as follows:
(f)
Interpretation: The pH of the solution after addition of 75 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(f)
Explanation of Solution
The number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
Thus, the amount of
Here, the concentration of
Thus, pH value can be calculated as follows:
(g)
Interpretation: The pH of the solution after addition of 100 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(g)
Explanation of Solution
The initial number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
The amount of
Now, only
The pH can be calculated as follows:
Putting the values,
(h)
Interpretation: The pH of the solution after addition of 125 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(h)
Explanation of Solution
The initial number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
The remaining hydroxide ion will react to form
The amount of
The molarity can be calculated as follows:
Similarly, for
This is third equivalence point and the ICE table can be represented as follows:
The base dissociation constant can be represented as follows:
The equation will be:
On solving, the value of x will be:
This is concentration of hydroxide ion, the pH value can be calculated as follows:
Putting the values,
(i)
Interpretation: The pH of the solution after addition of 150 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(i)
Explanation of Solution
The hydrogen ion concentration in the beginning can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react with
The remaining hydroxide ion will react to form
The amount of
The molarity for
The ICE tale will be:
The base dissociation constant can be represented as follows:
The equation will be:
On solving, the value of x will be:
This is concentration of hydroxide ion, the pH value can be calculated as follows:
Putting the values,
(j)
Interpretation: The pH of the solution after addition of 200 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(j)
Explanation of Solution
The hydrogen ion concentration in the beginning can be calculated as follows:
Now, to convert
The remaining number of moles of hydroxide ion will be 5 mmol.
The molarity of
The reaction of hydroxide ion with
The base dissociation constant can be represented as follows:
The equation will be:
On solving, the value of x will be:
The hydroxide ion concentration will be:
This is concentration of hydroxide ion, the pH value can be calculated as follows:
Putting the values,
Want to see more full solutions like this?
Chapter 8 Solutions
EBK CHEMICAL PRINCIPLES
- Phenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardThe pigment cyanidin aglycone is one of the anthocyanin molecules that gives red cabbage (Brassica oleracea var. capitata f. rubra) its characteristic red coloration. Many chemistry students have used this red cabbage indicator to study acid-base chemistry. Estimate tire pH range at which cyanidin agly-cone shows a color change. Anth-H(aq) Anth(aq) + H+ (aq) Ka = 1.3 107arrow_forwardThree students titrate different samples of the same solution of HCI to obtain its molarity. Below are their data. Student A: 20.00mLHCl+20.00mLH2O 0.100 M NaOH used to titrate to the equivalence point Student B: 20.00mLHCl+40.00mLH2O 0.100 M NaOH used to titrate to the equivalence point Student C: 20.00mLHCl+20.00mLH2O 0.100 M Ba(OH)2 used to titrate to the equivalence point. All the students calculated the molarities correctly. Which (if any) of the following statements are true? (a) The molarity calculated by A is half that calculated by B. (b) The molarity calculated by A is equal to that calculated by C. (c) The molarity calculated by B is twice that calculated by C. (d) The molarity calculated by A is twice that calculated by B. (e) The molarity calculated by A is equal to that calculated by B.arrow_forward
- Consider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forwardGiven the acid-base indicators in Question 37, select a suitable indicator for the following titrations. (a) sodium formate (NaCHO2) with HNO3 (b) hypochlorous acid with barium hydroxide (c) nitric acid with HI (d) hydrochloric acid with ammoniaarrow_forwardDoes the pH of the solution increase, decrease, or stay the same when you (a) add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015 M oxalic acid, H2C2O4? (b) add solid ammonium chloride to 75 mL of 0.016 M HCl? (c) add 20.0 g of NaCl to 1.0 L of 0.10 M sodium acetate, NaCH3CO2?arrow_forward
- You are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forwardConsider the nanoscale-level representations for Question 111 of the titration of the aqueous strong acid HA with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: (a) After a very small volume of titrant has been added to the initial HA solution? (b) Halfway to the equivalence point? (c) When enough titrant has been added to take the solution just past the equivalence point? (d) At the equivalence point? Nanoscale representations for Question 111.arrow_forwardInstead of the titration of a strong acid by a strong base considered in Question 5, consider the titration of a strong base by a strong acid. Compare and contrast a strong acidstrong base titration with a strong basestrong acid titration.arrow_forward
- Write the chemical equation and the expression for the equilibrium constant, and calculate Kb for the reaction of each of the following ions as a base. (a) sulfate ion (b) citrate ionarrow_forwardWhat is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forwardThe composition diagram, or alpha plot, for the important acid-base system of carbonic acid, H2CO3, is illustrated. (See Study Question 1.7 for more information on such diagrams.) (a) Explain why the fraction of bicarbonate ion, HCO3, rises and then falls as the pH increases. (b) What is the composition of the solution when the pH is 6.0? When the pH is 10.0? (c) If you wanted to buffer a solution at a pH of 11.0, what should be the ratio of HCO3 to CO32?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning