Introduction to General, Organic and Biochemistry
11th Edition
ISBN: 9781285869759
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.75P
Interpretation Introduction
Interpretation:
The weak base used as a flame retardant in plastics should be identified.
Concept Introduction:
A solution with hydroxide ion is said to be basic in nature. If a base completely dissociates into its conjugate acid and hydroxide ion, it is known as a strong base but if the base partially dissociates it is known as a weak base.
The dissociation of weak base is represented as follow:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer the following questions about acid-base equilibrium reactions.
(a)Which is a stronger acid HX or HY in the reaction below? HX + Y –→X –+ HYK eq= 2.43 x 10 –3
(b)What is the difference between a strong acid and a weak acid in terms of equilibrium position?
(c)If the Kaof H2CO3is 4.3 x 10 –7and the Kaof HF is 6.8 x 10 –4, then is the reaction below reactant favored or product favored?H2CO3+ F –→HCO3–+ HF
D
Ex 4 please
EX 6b please
CH3CH2COOH
Draw the Lewis structure of the acid and mark the acidic hydrogen with an asterisk (*).
Draw a Lewis structure of the conjugate base of the acid.
Suppose the acid is neutralized with a strong base.
a) Which of the two structures you drew in 6 and 7 would be the predominant form of the species at a pH well above that at the equivalence point?
b) Which of the two structures would be the predominant form of the species at a very low pH, well below that at the equivalence point and similar to the pH near the start of the titration?
c) At what point in the titration, if any, would there be equal amounts of the two forms?
Chapter 8 Solutions
Introduction to General, Organic and Biochemistry
Ch. 8.3 - Problem 8-1 Draw the acid and base reactions for...Ch. 8.4 - Prob. 8.2PCh. 8.5 - Prob. 8.3PCh. 8.5 - Problem 8-4 Which is the stronger acid? (a)...Ch. 8.6 - Problem 8-5 Write the balanced net ionic equation...Ch. 8.7 - Problem 8-6 The [OH-] of an aqueous solution is M....Ch. 8.8 - Problem 8-7 (a) The [H3O+] of an acidic solution...Ch. 8.8 - Problem 8-8 The [OH-] of a solution is M. What are...Ch. 8.9 - Problem 8-9 Calculate the concentration of an...Ch. 8.10 - Problem 8-10 What is the pH of a buffer solution...
Ch. 8.11 - Problem 8-11 What is the pH of a boric acid buffer...Ch. 8.12 - Prob. 8.12PCh. 8 - 8-13 Define (a) an Arrhenius acid and (b) an...Ch. 8 - 8-14 Write an equation for the reaction that takes...Ch. 8 - 8-15 Write an equation for the reaction that takes...Ch. 8 - 8-16 For each of the following, tell whether the...Ch. 8 - 8-17 For each of the following, tell whether the...Ch. 8 - 8-18 Which of these acids are monoprotic, which...Ch. 8 - 8-19 Define (a) a Brønsted—Lowry acid and (b) a...Ch. 8 - 8-20 Write the formula for the conjugate base of...Ch. 8 - 8-21 Write the formula for the conjugate base of...Ch. 8 - Prob. 8.22PCh. 8 - Prob. 8.23PCh. 8 - Prob. 8.24PCh. 8 - 8-25 Draw the acid and base reactions for the...Ch. 8 - Prob. 8.26PCh. 8 - Prob. 8.27PCh. 8 - 8-28 Will carbon dioxide be evolved as a gas when...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - Prob. 8.31PCh. 8 - Prob. 8.32PCh. 8 - 8-33 Write an equation for the reaction of HCI...Ch. 8 - 8-34 When a solution of sodium hydroxide is added...Ch. 8 - 8-35 Given the following values of [H3O+),...Ch. 8 - 8-36 Given the following values of [OH-],...Ch. 8 - 8-37 What is the pH of each solution given the...Ch. 8 - 8-38 What is the pH and pOH of each solution given...Ch. 8 - 8-39 What is the pH of each solution given the...Ch. 8 - Prob. 8.40PCh. 8 - 8-41 What is the [OH-] and pOH of each solution?...Ch. 8 - Prob. 8.42PCh. 8 - 8-43 What is the molarity of a solution made by...Ch. 8 - 8-44 What is the molarity of a solution made by...Ch. 8 - 8-45 Describe how you would prepare each of the...Ch. 8 - 8-46 If 25.0 mL of an aqueous solution of H2SO4...Ch. 8 - 8-47 A sample of 27.0 mL of 0.310 M NaOH is...Ch. 8 - 8-48 A 0.300 M solution of H2SO4 was used to...Ch. 8 - 8-49 A solution of NaOH base was titrated with...Ch. 8 - 8-50 The usual concentration of HCO3- ions in...Ch. 8 - 8-51 What is the end point of a titration?Ch. 8 - Prob. 8.52PCh. 8 - 8-53 Write equations to show what happens when, to...Ch. 8 - 8-54 Write equations to show what happens when, to...Ch. 8 - 8-55 We commonly refer to a buffer as consisting...Ch. 8 - Prob. 8.56PCh. 8 - Prob. 8.57PCh. 8 - 8-58 What is the connection between buffer action...Ch. 8 - Prob. 8.59PCh. 8 - 8-60 How is the buffer capacity affected by the...Ch. 8 - 8-61 Can 100 of 0.1 M phosphate buffer at pH 7.2...Ch. 8 - 8-62 What is the pH of a buffer solution made by...Ch. 8 - 8-63 The pH of a solution made by dissolving 1.0...Ch. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - 8-66 Calculate the pH of an aqueous solution...Ch. 8 - Prob. 8.67PCh. 8 - 8-68 If you have 100 mL of a 0.1 M buffer made of...Ch. 8 - Prob. 8.69PCh. 8 - Prob. 8.70PCh. 8 - 8-71 Explain why you do not need to know the...Ch. 8 - Prob. 8.72PCh. 8 - Prob. 8.73PCh. 8 - Prob. 8.74PCh. 8 - Prob. 8.75PCh. 8 - 8-76 (Chemical Connections 8B) Name the most...Ch. 8 - Prob. 8.77PCh. 8 - Prob. 8.78PCh. 8 - 8-79 (Chemical Connections 8D) Another form of the...Ch. 8 - Prob. 8.80PCh. 8 - Prob. 8.81PCh. 8 - 8-82 Assume that you have a dilute solution of HCI...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - 8-86 Following are three organic acids and the...Ch. 8 - 8-87 The pKavalue of barbituric acid is 5.0. If...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.89PCh. 8 - Prob. 8.90PCh. 8 - Prob. 8.91PCh. 8 - Prob. 8.92PCh. 8 - 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI...Ch. 8 - 8-94 Suppose you wish to make a buffer whose pH is...Ch. 8 - Prob. 8.95PCh. 8 - 8-96 Suppose you want to make a CH3COOH/CH3COO-...Ch. 8 - Prob. 8.97PCh. 8 - 8-98 When a solution prepared by dissolving 4.00 g...Ch. 8 - Prob. 8.99PCh. 8 - Prob. 8.100PCh. 8 - 8-101 Suppose you have an aqueous solution...Ch. 8 - Prob. 8.102PCh. 8 - 8-103 Suppose you have a phosphate buffer...Ch. 8 - Prob. 8.104PCh. 8 - Prob. 8.105PCh. 8 - Prob. 8.106PCh. 8 - 8-107 Following are pH ranges for several human...Ch. 8 - 8-108 What is the ratio of HPO42-/H2PO4- in a...Ch. 8 - Prob. 8.109PCh. 8 - 8-110 A concentrated hydrochloric acid solution...Ch. 8 - 8-111 The volume of an adult's stomach ranges from...Ch. 8 - 8-112 Consider an initial 0.040 M hypobromous acid...Ch. 8 - Prob. 8.113PCh. 8 - Prob. 8.114PCh. 8 - 8-115 When a solution prepared by dissolving 0.125...Ch. 8 - 8-116 A railroad tank car derails and spills 26...Ch. 8 - Prob. 8.117P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 8-76 (Chemical Connections 8B) Name the most common bases used in over-the-counter antacids.arrow_forward8-15 Write an equation for the reaction that takes place when each base is added to water. (a) LiOH (b) (CH3)2NH (c) Sr(OH)2 (d) CH3CH2NH2arrow_forward8-79 (Chemical Connections 8D) Another form of the sprinter's trick is to drink a sodium bicarbonate shake before the event. What would be the purpose of doing so? Give the relevant equations.arrow_forward
- 8-110 A concentrated hydrochloric acid solution contains 36.0% HCI (density 1.18 = g/mL). How many liters are required to produce 10.0 L of a solution that has a pH of 2.05?arrow_forward8-111 The volume of an adult's stomach ranges from 50 mL when empty to 1 L when full. On a certain day, its volume is 600. mL and its contents have a pH of 2.00. (a) Determine the number of moles of present. (Chapter 4) (b) Assuming that all the H+ is due to HCl(aq), how many grams of sodium hydrogen carbonate, NaHCO3, will completely neutralize the stomach acid? (Chapter 4)arrow_forward8-43 What is the molarity of a solution made by dissolving 12.7 g of HCI in enough water to make 1.00 L of solution?arrow_forward
- 8-14 Write an equation for the reaction that takes place when each acid is added to water. (a) HNO3 (b) HBr (c) HCO3- (d) NH4+arrow_forward8-115 When a solution prepared by dissolving 0.125 g of an unknown diprotic acid in 25.0 mL of water is titrated with 0.200 M NaOH, 30.0 ml, of the NaOH solution is needed to neutralize the acid. Determine the molarity of the acid solution. What is the molar mass of the unknown diprotic acid?arrow_forward8-13 Define (a) an Arrhenius acid and (b) an Arrhenius base.arrow_forward
- 8-33 Write an equation for the reaction of HCI with each compound. Which are acid—base reactions? Which are redox reactions? (a) Na2CO3 (b) Mg (c) NaOH (d) Fe2O3 (e) NH3 (f) CH3NH2 (g) NaHCO3 (h) AIarrow_forward8-50 The usual concentration of HCO3- ions in blood plasma is approximately 24 millimoles per liter (mmol/L). How would you make up 1.00 L of a solution containing this concentration of HCO3- ions?arrow_forward8-45 Describe how you would prepare each of the following solutions (in each case, assume that the base is a solid). (a) 400.0 mL of 0.75 M NaOH (b) 1.0 L of 0.071 M Ba(OH)2 (c) 500.0 mL of 0.1 M KOH (d) 2.0 L of 0.3 M sodium acetatearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY