
Concept explainers
8-41 What is the [OH-] and pOH of each solution?
(a) 0.10 M KOH,
(b) 0.10 M Na2CO3,
(c) 0.10 M Na3PO4,
(d) 0.10 M NaHCO3,

(a)
Interpretation:
The hydroxide ion concentration and pOH of KOH to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 8.41P
pOH of solution is 1.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOH can be determined as:
Thus, pOH of solution is 1.

(b)
Interpretation:
The hydroxide ion concentration and pOH of Na2 CO3 to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 8.41P
pOH of solution is 2.4.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOHcan be determined as:
Thus, pOH of solution is 2.4.

(c)
Interpretation:
The hydroxide ion concentration and pOH of Na3 PO4 to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 8.41P
pOH of solution is 2.0.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOHcan be determined as:
Thus, pOH of solution is 2.0.

(d)
Interpretation:
The hydroxide ion concentration and pOH of NaHCO3 to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 8.41P
pOH of solution is 5.6.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOH can be determined as:
Thus, pOH of solution is 5.6.
Want to see more full solutions like this?
Chapter 8 Solutions
Introduction to General, Organic and Biochemistry
- Indicate the variation in conductivity with concentration in solutions of strong electrolytes and weak electrolytes.arrow_forwardThe molar conductivity of a very dilute solution of NaCl has been determined. If it is diluted to one-fourth of the initial concentration, qualitatively explain how the molar conductivity of the new solution will compare with the first.arrow_forwardWhat does the phrase mean, if instead of 1 Faraday of electricity, Q coulombs (Q/F Faradays) pass through?arrow_forward
- What characteristics should an interface that forms an electrode have?arrow_forwardFor a weak acid AcH, calculate the dissociated fraction (alpha), if its concentration is 1.540 mol L-1 and the concentration [H+] is 5.01x10-4 mol L-1.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forward
- If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardIf the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data: molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.arrow_forwardDetermine the distance between the metal and the OHP layer using the Helm- holtz model when the electrode's differential capacitance is 145 μF cm². DATA: dielectric constant of the medium for the interfacial zone &r= lectric constant of the vacuum &0 = 8.85-10-12 F m-1 = 50, die-arrow_forward
- Describe a sequence of photophysical processes that can be followed by radiation adsorbed by a molecule in the ground state to give rise to phosphorescent emission.arrow_forwardState two similarities between fluorescence and phosphorescence.arrow_forwardState three photophysical processes that can be related to the effects of incident radiation on a molecule in its ground state. Consider that radiation can give rise to fluorescent emission, but not phosphorescent emission.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





