Concept explainers
A cylindrical pressure vessel having a radius r = 14 in. and wall thickness t = 0,5 in, is subjected to internal pressure p = 375 psi, In addition, a torque T = 90 kip-ft acts at each end of the cylinder (see figure),
(a) Determine the maximum tensile stress ctniXand the maximum in-plane shear stress Tmjv in the wall of the cylinder.
(b) If the allowable in-plane shear stress is 4.5 ksi, what is the maximum allowable torque T\
(c) If 7 = 150 kip-ft and allowable in-plane shear and allowable normal stresses are 4.5 ksi and 11.5 ksi, respectively, what is the minimum required wall thickness
(a)
The maximum tensile stress
Answer to Problem 8.5.7P
The maximum tensile stress is
Explanation of Solution
Given Information:
Type of vessel = cylindrical
Radius =
Internal pressure =
Wall thickness =
Torque =
Concept used:
Where
Calculation:
Use the following relation to find the longitudinal stress.
Here, wall thickness is
Substitute
Use the following relation to find the hoop stress.
Substitute
Use the following relation to find the shear stress.
Here, torque is
Express the value of
Substitute
From equation
Find the maximum stress
Use the following relation to find the principal stresses.
Substitute
Calculate the principal stress,
As
Use the following relation to find the maximum in plane shear stress
Substitute
Hence, the maximum shear stress is
Conclusion
The values are found by the concept of longitudinal stress and hoop stress.
(b)
Maximum torque.
Answer to Problem 8.5.7P
The maximum torque is
Explanation of Solution
Given Information:
Concept used:
Calculation:
Find the maximum torque
Substitute
Conclusion:
The maximum torque is calculated by equating 1p , Tmax, r, etc.
(C)
What is the minimum required wall thickness.
Answer to Problem 8.5.7P
The minimum required wall thickness is
Explanation of Solution
Given Information:
Concept used:
Calculation:
Here, allowable in plane shear stress is
Substitute
Express the value of
Here, assumed
Variable are
Evaluate the value of
Evaluate the value of
Substitute
Substitute the value of
Use the trial and error method to find the thickness
Trial
Substitute
Trial
Substitute
Trial
Substitute
Substitute
Express the allowable in plane shear stress.
Substitute
Substitute
As
Hence, from the trial and error method the minimum wall thickness
Conclusion:
The minimum thickness is calculated by trial and error method.
Want to see more full solutions like this?
Chapter 8 Solutions
Mechanics of Materials, SI Edition
- 2.4 (A). A 75 mm diameter compound bar is constructed by shrinking a circular brass bush onto the outside of a 50 mm diameter solid steel rod. If the compound bar is then subjected to an axial compressive load of 160 kN determine the load carried by the steel rod and the brass bush and the compressive stress set up in each material. For steel, E 210 GN/m²; for brass, E = 100 GN/m². [I. Struct. E.] [100.3, 59.7 kN; 51.1, 24.3 MN/m².]arrow_forward1.7 (A). A bar ABCD consists of three sections: AB is 25 mm square and 50 mm long, BC is of 20 mm diameter and 40 mm long and CD is of 12 mm diameter and 50 mm long. Determine the stress set up in each section of the bar when it is subjected to an axial tensile load of 20 kN. What will be the total extension of the bar under this load? For the bar material, E = 210GN/m2. [32,63.7, 176.8 MN/mZ, 0.062mrn.l 10:41 مarrow_forward2.2 (A). If the maximum stress allowed in the copper of the cable of problem 2.1 is 60 MN/m2, determine the maximum tension which C3.75 kN.1 10:41 مarrow_forward
- 1.1 (A). A 25mm squarecross-section bar of length 300mm carries an axial compressive load of 50kN. Determine the stress set up ip the bar and its change of length when the load is applied. For the bar material E = 200 GN/m2. [80 MN/m2; 0.12mm.larrow_forward2.1 (A). A power transmission cable consists of ten copper wires each of 1.6 mm diameter surrounding three steel wires each of 3 mm diameter. Determine the combined E for the compound cable and hence determine the extension of a 30 m length of the cable when it is being laid with a tension of 2 kN. For steel, E200 GN/mZ; for copper, E = 100 GN/mZ. C151.3 GN/mZ; 9.6 mm.] 10:41 مarrow_forwardquestion 662 thank youarrow_forward
- 1.5 (A). A simple turnbuckle arrangement is constructed from a 40 mm outside diameter tube threaded internally at each end to take two rods of 25 mm outside diameter with threaded ends. What will be the nominal stresses set up in the tube and the rods, ignoring thread depth, when the turnbuckle cames an axial load of 30 kN? Assuming a sufficient strength of thread, what maximum load can be transmitted by the turnbuckle if the maximum stress is limited to 180 MN/mz? C39.2, 61.1 MN/m2, 88.4 kN.1arrow_forward1.3 (A). Define the terms shear stress and shear strain, illustrating your answer by means of a simple sketch. Two circular bars, one of brass and the other of steel, are to be loaded by a shear load of 30 kN. Determine the necessary diameter of the bars (a) in single shear, (b) in double shear, if the shear stress in the two materials must not exceed 50 MN/m2 and 100 MN/ mZ respectively. C27.6, 19.5, 19.5, 13.8mm.l 11arrow_forward1.4 (A). Two forkend pieces are to be joined together by a single steel pin of 25mm diameter and they are required to transmit 50 kN. Determine the minimum cross-sectional area of material required in one branch of either fork if the stress in the fork material is not to exceed 180 MN/m2. What will be the maximum shear stress in the pin? C1.39 x 10e4mZ; 50.9MN/mZ.] 10:41arrow_forward
- 1.2 (A). A steel tube, 25 mm outside diameter and 12mm inside diameter, cames an axial tensile load of 40 kN. What will be the stress in the bar? What further increase in load is possible if the stress in the bar is limited to 225 MN/mZ? [lo6 MN/m3; 45 kN.1arrow_forward1.11 (a) A test piece is cut from a brass bar and subjected to a tensile test. With a load of 6.4 kN the test piece, of diameter 11.28 mm, extends by 0.04 mm over a gauge length of 50 mm. Determine: (i) the stress, (ii) the strain, (hi) the modulus of elasticity. (b) A spacer is turned from the same bar. The spacer has a diameter of 28 mm and a length of 250mm. both measurements being made at 20°C. The temperature of the spacer is then increased to 100°C, the natural expansion being entirely prevented. Taking the coefficient of linear expansion to be 18 x 10-6/"C determine: (i) the stress in the spacer, (ii) the compressive load on the spacer. [C.G.] [64MN/m2, 0.0008, 80GN/m2, 115.2 MN/m2, 71 KN.] 10:41arrow_forwardI have attached an image, In that they have mentioned the tolerance of 0.4 for all surfaces. I need to know what's the exact tolerance.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning