(a)
Interpretation:
The rate at which heat is transferred from the condenser is to be calculated.
Concept introduction:
The rate of heat transfer is calculated as:
For an adiabatic system, the heat lost by one component in the system is the heat gained by another component in that system. Thus,
(b)
Interpretation:
The state of the product stream is to be determined if the heat is transferred at the lower rate than that calculated in part (a).
Concept introduction:
Removal of heat from any vapor at its normal boiling point leads to the condensation of the vapor to liquid phase until all the vapor is condensed and further removal of heat leads to the cooling of the liquid. If less heat is removed from the vapor, then partial condensation happens, and vapor and liquid coexist at its normal boiling point.
(c)
Interpretation:
The state of the product stream is to be determined if the heat is transferred at the higher rate than that calculated in part (a). Also, a phase diagram is to be drawn.
Concept introduction:
Removal of heat from any vapor at its normal boiling point leads to the condensation of the vapor to liquid phase until all the vapor is condensed and further removal of heat leads to the cooling of the liquid. If less heat is removed from the vapor, then partial condensation happens, and vapor and liquid coexist at its normal boiling point.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Elementary Principles of Chemical Processes
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The