Ever wonder why espresso costs much more per cup than regular drip coffee? Part of the reason is the expensive equipment needed to brew a proper espresso. A high-powered burr grinder first shears the coffee beans to a fine powder without producing too much heat. (Heating the coffee in the grinding stage prematurely releases the volatile oils that give espresso its rich flavor and aroma.) The ground coffee is put into a cylindrical container called a gruppa and tamped down firmly to provide an even flow of water through it. An electrically heated boiler inside the espresso machine maintains water in a reservoir at 1.4 bar and 109°C. An electric pump takes cold water at 15°C and 1 bar, raises its pressure to slightly above 9 bar, and feeds it into a heating coil that passes through the reservoir. Heat transferred from the reservoir through the coil wall raises the water temperature to 96°C. The heated water flows into the top of the gruppa at 96°C and 9 bar, passes slowly through the tightly packed ground beans, and dissolves the oils and some of the solids in the beans to become espresso, which decompresses to 1 atm as it exits the machine. The water temperature and uniform flow through the bed of packed coffee in the gruppa lead to the more intense flavor of espresso relative to normal drip coffee. Water drawn directly from the reservoir is expanded to atmospheric pressure where it forms steam, which is used to heat and froth milk for lattes and cappuccinos.
- Sketch this process, using blocks to represent the pump, reservoir, and gruppa. Label all heat and work flows in the process, including electrical energy.
- To make a 14-oz latte, you would steam 12 ounces of cold milk (3°C) until it reaches 71°C and pour it over 2 ounces of espresso. Assume that the steam cools but none of it condenses as it bubbles through the milk. For each latte made, the heating element that maintains the reservoir temperature must supply enough energy to heat the espresso water plus enough to heat the milk, plus additional energy. Assuming
calculate the quantity of electrical energy that must be provided to the heating clement to accomplish those two functions. Why would more energy than what you calculate be required? (There are several reasons.)
- Coffee beans contain a considerable amount of trapped carbon dioxide, not all of which is released when the beans arc ground. When the hot pressurized water percolates through the ground beans, some of the carbon dioxide is absorbed in the liquid. When the liquid is then dispensed at atmospheric pressure, fine CO; bubbles come out of solution. In addition, one of the chemical compounds formed when the coffee beans are roasted and extracted into the espresso is melanoidin, a surfactant. Surfactant molecules are asymmetrical, with one end being hydrophilic (drawn to water) and the other end hydrophobic (repelled by water). When the bubbles (thin water films containing CO2) pass through the espresso liquid, the hydrophilic ends of the melanoidin molecules attach to the bubbles and the dissolved bean oils in turn attach to the hydrophobic ends. The result is that the bubbles emerge coated with the oils to form the crema, the familiar reddish- brown stable foam at the surface of good espresso. Speculate on why you don’t see crema in normal drip coffee. (Hint: Henry’s law should show up in your explanation.) Note: All soaps and shampoos contain at least one surfactant species. (A common one is sodium lauryl sulfate.) Its presence explains why if you have greasy hands, washing with plain water may leave the grease untouched but washing with soap removes the grease.
- Explain in your own words (i) how espresso is made, (ii) why espresso has a more intense flavor than regular drip coffee, (iii) what the crema in espresso is, how it forms, and why it doesn’t appear in regular drip coffee, and (iv) why washing with plain water does not remove grease but washing with soap does. (Note: Many people automatically assume that all chemical engineers are extraordinarily intelligent. If you can explain those four things, you can help perpetuate that belief.)
Learn your wayIncludes step-by-step video
Chapter 8 Solutions
ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)
Additional Engineering Textbook Solutions
Starting Out with Python (4th Edition)
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
Modern Database Management
Java: An Introduction to Problem Solving and Programming (8th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
- The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardstep by step pleasearrow_forwardstep by step pleasearrow_forward
- step by steparrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forward
- O Consider a 0.8 m high and 0.5 m wide window with thickness of 8 mm and thermal conductivity of k = 0.78 W/m °C. For dry day, the temperature of outdoor is -10 °C and the inner room temperature is 20°C. Take the heat transfer coefficient on the inner and outer surface of the window to be h₁ = 10 W/m² °C and h₂ = 40 W/m² °C which includes the effects of insulation. Determine:arrow_forwardCalculate the mass flow rate of the steam. Determine Cp and C₁ of steam.arrow_forwardstep by step pleasearrow_forward
- step by steparrow_forward4. Show that the fraction, F, of the energy released from a supercritical chain reaction that originates in the final m generations of the chain is given approximately by F= 1 km provided the total number of generations is large.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP A solution containing 7.5% sulfuric acid by weight at 70 °F is concentrated to 45% by weight by evaporating water. The concentrated solution and the water vapor exit the evaporator at 170 °F and 1 atm. Calculate the rate at which heat must be transferred to the evaporator to process 1500 lbm/hr of the feed solution to the evaporator. It is recommended to use the enthalpy-concentration diagram for sulfuric acid from Chapter 8 of Felder's book or an enthalpy-concentration diagram for sulfuric acid found in another unit operations book or chemical engineering manual such as Perry's.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The