Concept explainers
(a)
The maximum height the ball attains when it swings up.
(a)
Answer to Problem 82CP
The maximum height of the ball when it swings up is
Explanation of Solution
Consider the ball-string-wind as a system under gravitational force.
Since the work done by the wind on the system is transformed into potential energy of the system.
Write the equation for conservation of energy
Here,
Write the expression for the change in potential energy
Here,
Since the kinetic energy of the systems remains zero because in both initial and final cases the system is not in rest.
Write the expression for potential energy
Here,
.
Substitute
Here,
Since the difference in initial and final height is given by
Substitute
Substitute
Simplify the above equation.
Write the expression for work done by the force
Here,
Substitute
Write the expression for distance in the direction of the force exerted from the figure (I).
Here,
Simplify the above equation.
Substitute
Simplify the above equation.
Since one root of the above equation is zero, so take non-zero value of
Solve the above equation.
Simplify the above equation to find the expression for
Conclusion:
Substitute
Simplify the above equation.
Thus, the maximum height of the ball when it swings up is
(b)
The maximum height the ball attains when the force exerted by wind is
(b)
Answer to Problem 82CP
The maximum height attained by the ball, when the force exerted by wind is
Explanation of Solution
Conclusion:
Substitute
Thus, the maximum height attained by the ball, when the force exerted by wind is
(c)
The maximum height the ball attains when the force exerted by wind is
(c)
Answer to Problem 82CP
The maximum height attained by the ball, when the force exerted by wind is
Explanation of Solution
Consider the equation (V) for the maximum height attained due to the force exerted by the wind.
The ball swings in the upward direction by the wind force exerted on the ball.
Conclusion:
Substitute
Thus, The maximum height attained by the ball, when the force exerted by wind is
(d)
The maximum height when the force exerted by wind approaches to zero.
(d)
Answer to Problem 82CP
The maximum height approaches to zero when
Explanation of Solution
Write the expression for the maximum height in the limit form as.
Substitute
Conclusion:
Thus, the maximum height approaches to zero when
(e)
The behavior of maximum height when the force exerted by wind approaches to infinity.
(e)
Answer to Problem 82CP
The maximum height approaches to
Explanation of Solution
Write the expression for the maximum height in the limit form as.
Substitute
Thus, the maximum height approaches to
(f)
The equivalent height of the ball with the wind blowing.
(f)
Answer to Problem 82CP
The equivalent height of the ball with the wind blowing is
Explanation of Solution
Consider the system in an equilibrium state with net force zero as shown in figure (II).
Write the equation for net force in a vertical direction from the figure (II)
Here,
When the ball-string system is in equilibrium, the net force will be zero in all directions.
Here,
Substitute
Simplify the above equation.
Write the equation for net force in a horizontal direction from the figure (II)
Here,
Substitute
Simplify the above equation.
Divide equaiton (VIII) by equation (VII).
Write the expression for
Substitute
Write the expression for equivalent height from the figure (II).
Here,
Substitute
Conclusion:
Substitute
Substitute
Simplify the above expression as.
Thus, the equivalent height of the ball with the wind blowing is
(g)
The equivalent height when
(g)
Answer to Problem 82CP
The equivalent height when
Explanation of Solution
Conclusion:
Substitute
Thus, the equivalent height when
(h)
The equivalent height when the force exerted by wind approaches to infinity.
(h)
Answer to Problem 82CP
The equivalent height when the force exerted by wind approaches to infinity is
Explanation of Solution
Consider the equivalent height from the equation (XII).
Write the expression for equivalent height from the equation (XII).
Write the equation for
Substitute
Conclusion:
Thus, the equivalent height when the force exerted by wind approaches to infinity is
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.arrow_forwardA Eric is twirling a ball of mass m = 0.150 kg attached to a lightweight string in a vertical circle. If the total energy of the system is conserved, by what factor does the tension on the string increase at the bottom compared with the top of the circle?arrow_forward
- To develop muscle tone, a woman lifts a 2.00-kg weight held in her hand. She uses her biceps muscle to flex the lower arm through an angle of 60.0°. (a) What is the angular acceleration if the weight is 24.0 cm from the elbow joint, her forearm has a moment of inertia of 0.250kg-m2 and the net force she exerts is 750 N at an effective perpendicular lever arm of 2.00 cm? (b) How much work does she do?arrow_forwardJane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with person-eating crocodiles to save Tarzan from danger. She must swing into a wind exerting constant horizontal force F, on a vine having length L and initially making an angle with the vertical (Fig. P7.81). Take D = 50.0 m, F = 110 N, L = 40.0 m, and = 50.0. (a) With what minimum speed must Jane begin her swing to just make it to the other side? (b) Once the rescue is complete, Tarzan and Jane must swing back across the river. With what minimum speed must they begin their swing? Assume Tarzan has a mass of 80.0 kg.arrow_forwardA small particle of mass m is pulled to the top of a friction less half-cylinder (of radius R) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.15. (a) Assuming the particle moves at a constant speed, show that F = mg cos . Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating W=Fdr, find the work done in moving the particle at constant speed from the bottom to the top of the hall-cylinder. Figure P7.15arrow_forward
- A space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardIn each situation shown in Figure P8.12, a ball moves from point A to point B. Use the following data to find the change in the gravitational potential energy in each case. You can assume that the radius of the ball is negligible. a. h = 1.35 m, = 25, and m = 0.65 kg b. R = 33.5 m and m = 756 kg c. R = 33.5 m and m = 756 kg FIGURE P8.12 Problems 12, 13, and 14.arrow_forwardTo form a pendulum, a 0.092 kg ball is attached to one end of a rod of length 0.84 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same? (a) Number i (b) Number (c) Number (d) Units Units Units #arrow_forward
- A m=28g rifle bullet travelling at v=230m/s buries itself in a M=3.6kg pendulum hanging initially at rest on a l=2.8m long string, which makes the pendulum swing upward in an arc. Determine the vertical h and horizontal x components of the pendulum’s displacement. See figure below. Choose a Reference Frame for gravitational potential energy and consider there is NO loss in mechanical energy of the system.arrow_forwardA slingshot consists of a Y-stick and a light leather cup containing a stone. The cup is pulled back against two parallel rubber bands. It takes a force of 15 N to stretch either one of these bands 1.0 cm. With what speed does the stone leave the slingshot?arrow_forwardA wrecking ball swings at the end of a 10.0 m cable. The operator manages to give the ball a speed of 6.00 m/s as it passes through the lowest point of its swing. If friction and air resistance are negligible, what speed does the ball have when the cable makes an angle of 30⁰ with respect to the vertical?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning