![Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781305932302/9781305932302_largeCoverImage.gif)
Concept explainers
(a)
The maximum speed of the needle.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 78AP
The maximum speed of the needle is
Explanation of Solution
Consider the needle-spring-body as a system. Since there are resisting forces when the needle moves through the skin. Hence, the maximum speed of the needle when projected horizontally using a spring will be at the point on the patient body.
Consider, the spring-needle as an isolated system.
Since the total energy of the system is conserved from the point the spring is maximumly compressed to the point the needle is on the point on the body of the patient. Hence, the total kinetic and potential energy will be conserved.
Write the equation for conservation of energy
Here,
Write the expression for the change in spring potential energy
Here,
Write the equation for spring potential energy
Here,
Since the spring is compressed initially and when the needle touches the skin spring has no potential energy.
Substitute
Simplify the above equation.
Write the expression for the change in kinetic energy of the spring-needle system
Here,
Since the needle is the one having the kinetic energy change when the needle moves from spring to patient body.
Write the equation for the kinetic energy of the needle
Here,
Substitute
Simplify the above equation.
Substitute
Rearrange the above equation.
Simplify the above equation.
Conclusion:
Substitute
Thus, the maximum speed of the needle is
(b)
The speed at which the flange on the back end of the needle runs into a stop that is set to limit the penetration.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 78AP
The speed at which the flange on the back end of the needle runs into a stop that is set to limit the penetration is
Explanation of Solution
Consider the needle-spring-body system as a system.
Since there are resisting forces when the needle moves through the skin.
Hence, the total energy of the needle while penetrating the skin is transformed into work done by the resisting forces.
Consider the needle-body as an isolated system.
Since the work done on the system is by internal resisting forces which are non-conservative.
Write the equation for conservation for energy
Here,
Since the needle moves horizontally, hence there is no change in potential energy.
Write the expression for work done
Here,
Write the equation for work done by resisting force
Here,
Write the expression for work done using the above equation
Here,
Since the needle is the one having the kinetic energy change when the needle moves from spring to patient body.
Substitute
Simplify the above equation.
Since the spring is compressed initially and when the needle touches the skin spring has no potential energy.
Substitute
Simplify the above equation.
Substitute
Rearrange the above equation.
Simplify the above equation.
Conclusion:
Substitute
Substitute
Thus, the speed at which the flange on the back end of the needle runs into a stop that is set to limit the penetration is
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)