
Concept explainers
(a)
The maximum speed of the needle.
(a)

Answer to Problem 78AP
The maximum speed of the needle is
Explanation of Solution
Consider the needle-spring-body as a system. Since there are resisting forces when the needle moves through the skin. Hence, the maximum speed of the needle when projected horizontally using a spring will be at the point on the patient body.
Consider, the spring-needle as an isolated system.
Since the total energy of the system is conserved from the point the spring is maximumly compressed to the point the needle is on the point on the body of the patient. Hence, the total kinetic and potential energy will be conserved.
Write the equation for conservation of energy
Here,
Write the expression for the change in spring potential energy
Here,
Write the equation for spring potential energy
Here,
Since the spring is compressed initially and when the needle touches the skin spring has no potential energy.
Substitute
Simplify the above equation.
Write the expression for the change in kinetic energy of the spring-needle system
Here,
Since the needle is the one having the kinetic energy change when the needle moves from spring to patient body.
Write the equation for the kinetic energy of the needle
Here,
Substitute
Simplify the above equation.
Substitute
Rearrange the above equation.
Simplify the above equation.
Conclusion:
Substitute
Thus, the maximum speed of the needle is
(b)
The speed at which the flange on the back end of the needle runs into a stop that is set to limit the penetration.
(b)

Answer to Problem 78AP
The speed at which the flange on the back end of the needle runs into a stop that is set to limit the penetration is
Explanation of Solution
Consider the needle-spring-body system as a system.
Since there are resisting forces when the needle moves through the skin.
Hence, the total energy of the needle while penetrating the skin is transformed into work done by the resisting forces.
Consider the needle-body as an isolated system.
Since the work done on the system is by internal resisting forces which are non-conservative.
Write the equation for conservation for energy
Here,
Since the needle moves horizontally, hence there is no change in potential energy.
Write the expression for work done
Here,
Write the equation for work done by resisting force
Here,
Write the expression for work done using the above equation
Here,
Since the needle is the one having the kinetic energy change when the needle moves from spring to patient body.
Substitute
Simplify the above equation.
Since the spring is compressed initially and when the needle touches the skin spring has no potential energy.
Substitute
Simplify the above equation.
Substitute
Rearrange the above equation.
Simplify the above equation.
Conclusion:
Substitute
Substitute
Thus, the speed at which the flange on the back end of the needle runs into a stop that is set to limit the penetration is
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





