ELEM PRIN OF CHEMICAL PROC(LL)+NEXTGEN
20th Edition
ISBN: 9781119761006
Author: FELDER
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.25P
Interpretation Introduction
Interpretation:
The area of the solar collector plate should be calculated.
Concept introduction:
The energy balance equation for this closed single-phase system (air) is given as,
Where, n = mole rate and
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1/obtain the transfer function for the block diagram shown in the
figure below:
G4
G
(Population density parameters from sieve analysis data)2 One hundred fifty grams
of crystals separated from one litre of suspension from an MSMPR crystallizer is
subjected to screen analysis to get the following data:
Tyler mesh
Mass(g)
12/14
28.5
14/20
29.2
20/28
28/35
35/48
below 48 mesh
37.5
27
24.7
3.1
Mesh no./ screen opening(um) data: 12/1410 μm; 14/1190; 20/841; 28/595; 35/420;
48/297.
The working volume of the crystallizer is 200 litres, and the rate of withdrawal of the
slurry is 250 litre per hour. Given pc = 1400 kg/m³ and volume shape factor o, = 0.42,
determine the crystal growth rate and the zero-size population density of the crystals.
What is the rate of nucleation, Bº?
need help with this phase transformations practise question
Chapter 8 Solutions
ELEM PRIN OF CHEMICAL PROC(LL)+NEXTGEN
Ch. 8 - 8.1. The specific internal energy of formaldehyde...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Prob. 8.4PCh. 8 - Prob. 8.5PCh. 8 - 8.6. Table B.7 of Appendix B gives the following...Ch. 8 - Prob. 8.7PCh. 8 - Two formulas for the heat capacity of CO are given...Ch. 8 - 8.9. Table B.2 lists values of the heat capacity...Ch. 8 - Prob. 8.10P
Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P
Knowledge Booster
Similar questions
- help with this practise question on phase transformations.arrow_forwardDifferentiate between an ideal and a regular solution consisting of a mixture of A and B atoms. Which of these solutions, is likely to contain a random mixture of atoms at all temperatures? For the binary A-B ideal-solution, differentiate the equation for the configurational entropy of mixing with respect to concentration. Hence show that the slope of the free energy of mixing versus concentration curve is towards tinfinity when the mole fraction is 0 or 1. Does this make it easy or hard to purify materials? [50%] (ii) How can a phase that has a limited solubility for a particular solute be forced to accept larger concentrations which far exceed its equilibrium solubility? [20%] (iii) Atoms of A and B are arranged in a straight line at random, with the mole fraction of B equal to x. What is the probability of finding two A atoms next to each other? How would your calculation be modified if this were to be a two-dimensional array of A and B atoms? [20%] (iv) An alloy is to be made,…arrow_forwardCan the method steps be given for these questions please 10 answer given is 0.01m/s 11 answer given is 0.067e Cnm where e is charge of electron divided by volume of unit cell, giving 0.165 C/m^2 12 answer is 0.08%arrow_forward
- 3. Differentiate f(x) = x² sin(x). 4. Evaluate the limit: lim x 0 sin(2x) Xarrow_forwardDifferentiate between an ideal and a regular solution consisting of a mixture of A andB atoms. Which of these solutions, is likely to contain a random mixture of atomsat all temperatures? For the binary A-B ideal-solution, differentiate the equationfor the configurational entropy of mixing with respect to concentration. Hence showthat the slope of the free energy of mixing versus concentration curve is towards±infinity when the mole fraction is 0 or 1. Does this make it easy or hard to purifymaterials?arrow_forwardQuestion During the solidification of a binary alloy, with a positive temperature gradient in the melt, a planar solid-liquid interface is moving at the steady state, Fig. Q1(i). The variation of the solute concentration, C, in the melt ahead of the interface is given by, b) If m is the liquidus gradient, or the slope of liquidus, Fig.Q1 (iv), how does the equilibrium temperature, T, vary with the melt composition C? T₁ = C=C1+ exp R.x D (equation 1.1) T L Solid Melt (iv) T₁ S S+L where Co is the nominal solute concentration in the alloy, Ko is the equilibrium distribution coefficient, R is the solid-liquid interface moving rate, D is the solute diffusivity in the melt and x is distance into the liquid phase, Fig. Q1(ii). Answer the questions in the steps below, to show that the level of constitutional supercooling is governed by both the actual temperature, T, and the composition, C, in the solidification front. a) Consider a point in the melt at a distance x away from the solid/melt…arrow_forward
- Practise question of phase transformations topic that I need help on thank you.arrow_forwardPractise question:arrow_forwardBarium titanate can exist in both the cubic and tetragonal crystal structures. Explain why the tetragonal form exhibits piezoelectricity whereas its cubic form does not. The transformation from cubic to tetragonal BaTiO3 occurs when the former is cooled below the Curie temperature of 120 ◦C. Describe how the change can be verified experimentally based on measurements made at ambient temperature.arrow_forward
- Calleb Sandl Soda ash 5% crushing Recycling melting furnace C float bath 600 annealing Mixing Sec Packing cutting Lime Salt Care Dolomite Powder Coal Glass plant has the follownig manufacturing process in figure is the glass where the produced glass contain the following composition: SiO2 72.5%, CaO 12.3% Na20 14.0%, Fe203 0.8%, MgO 0.4% and the production capacity of the plant is 32000 ton /year and the melting furnace consist the following reaction equations: Na CO,+ aSiO, NagO aSiO + CO₂ (1) CaCOy + b$iO, → CaO - bsiO, + CO, (2) Na,SO, + cSiO2 + C-Nago cSiO, + SO₂ + CO (3) The last reaction may take place as in equations (4) or (5), and (6): Na₂SO, C Na₂SO3 + CO 2Na2SO4 + C Na,SO+cSiO, 2Na₂SO3 + CO2 - Na₂O eSiO2 + SO2 (5) (6) The ratios Na₂O/SiO, and CaO/SiO, are not molar ratios. The ratio may be of the type Na O/1.8SiO,, for example. In an ordinary window glass the molar ratios are approximately 1.5 mol Nago, I mol CaO, and 5 mol SiO,. Other glasses vary widely (Table 11.2).…arrow_forward1-A counterflow, concentric tube heat exchanger is used to cool the lubricating oil for a large industrial gas turbine engine. The flow rate of cooling water through the inner tube (Di = 25 mm) is 0.2 kg/s, while the flow rate of oil through the outer annulus (Do = 45 mm) is 0.1 kg/s. The oil and water enter at temperatures of 100 and 30 C, respectively. The exit temperature of hot fluid and cold fluid is 60 and 40 C. calculate the LMTD. Calculate the surface area of the heat exchanger. How long must the tube? Properties: unused engine oil: cp = 2131 J/kg K, μ=3.25 ×10^-2 N.s/m^2, k = 0.138 W/m.K, 4178 J/kg .K, u= 725×10^-6 N.s/m2, k = 0.625 W/m.K, Pr = 4.85 water: cp neer in which steam is condensarrow_forwardplease... please. , how can I use the boundary conditions for this question (two fixed pates and the distance between plates is h).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The