ELEM PRIN OF CHEMICAL PROC(LL)+NEXTGEN
20th Edition
ISBN: 9781119761006
Author: FELDER
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.106P
Interpretation Introduction
(a)
Interpretation:
Derive an expression for the highest temperature attainable by the solution, state the conditions.
Concept introduction:
The ratio of moles of component A and B are,
Where, m = mass and M = molecular weight
Interpretation Introduction
(b)
Interpretation:
Estimate the maximum temperature for the given process.
Concept introduction:
The ratio of moles of component A and B are,
Where, m = mass and M = molecular weight
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Homework 8
View Policies
Show Attempt History
Current Attempt in Progress
Question 3 of 5
Entering Steam
>
>
Check table lookups for correct values.
Check significant figures.
Check unit conversions.
Calculate the required flow rate of the entering steam in m³/min.
0.00132
m³/min
eTextbook and Media
Hint
0/1
Assistance Used
Determine the specific enthalpy change of each stream first. Then use the known flow rate of the methanol to calculate the
steam flow rate.
Save for Later
Heat Transferred
× Check units and significant figures.
Calculate the rate of heat transfer from the water to the methanol (kW).
i 44.5
kW
Hint
Don't forget to convert minutes to seconds.
Save for Later
Attempts: 3 of 5 used
Submit Answer
Assistance Used
Attempts: 2 of 5 used
Submit Answer
← Homework 8
View Policies
Show Attempt History
Current Attempt in Progress
A liquid mixture of benzene and toluene containing 52.0 wt% benzene at 100.0 °C and pressure Po atm is fed at a rate of 32.5 m³/h into
a heated flash tank maintained at a pressure Ptank
Material Balances
Correct.
0.67/1
===
Attempts: 1 of 5 used
Calculate Ptank (atm), the mole fraction of benzene in the vapor, and the molar flow rates of the liquid and vapor products.
Ptank
.544
atm
Ybz
.657
mol benzene/mol vapor product
nvapor
55.8
mol/s
nliquid
37.6
mol/s
Hint
GO Tutorial
Energy Balance
Check heat capacities.
Calculate the required heat input rate in kilowatts. i
0.447
kW
Hint
GO Tutorial
Save for Later
Assistance Used
Attempts: 2 of 5 used
Assistance Used
Attempts: 1 of 5 used
Submit Answer
View Policies
Show Attempt History
Current Attempt in Progress
Homework 8
A stream of pure cyclopentane vapor flowing at a rate of 1650 L/s at 190.0°C and 1 atm enters a cooler in which 50.0% of the feed is
condensed at constant pressure.
Question 4 of 5
Correct
What is the temperature at the condenser outlet?
49.3
°℃
eTextbook and Media
Hint
Enthalpy Table
Your Answer Correct Answer (Used)
0.67/1
E
Attempts: 1 of 5 used
Prepare and fill in an inlet-outlet enthalpy table. Use a reference state of liquid cyclopentane at the boiling point.
In
T = 190.0°C
Out
T=49.3°C
Substance
n (mol/s)
Ĥ (kJ/mol) n (mol/s)
Ĥ (kJ/mol)
C5H10(1)
0.0
21.708
0.0
C5H10(V) 43.416
43.687
21.708
27.30
Heat
Check significant figures and sign.
Calculate the required cooling rate (a positive number).
! kW
Hint
Save for Later
Attempts: 3 of 5 used
Submit Answer
Chapter 8 Solutions
ELEM PRIN OF CHEMICAL PROC(LL)+NEXTGEN
Ch. 8 - 8.1. The specific internal energy of formaldehyde...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Prob. 8.4PCh. 8 - Prob. 8.5PCh. 8 - 8.6. Table B.7 of Appendix B gives the following...Ch. 8 - Prob. 8.7PCh. 8 - Two formulas for the heat capacity of CO are given...Ch. 8 - 8.9. Table B.2 lists values of the heat capacity...Ch. 8 - Prob. 8.10P
Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- View Policies Show Attempt History Current Attempt in Progress A liquid mixture of benzene and toluene containing 52.0 wt% benzene at 100.0 °C and pressure Po atm is fed at a rate of 32.5 m³/h into a heated flash tank maintained at a pressure Ptank Your answer is partially correct. 1.312 atm Assistance Used 0.58/1 Calculate Ptank (atm), the mole fraction of benzene in the vapor, and the molar flow rates of the liquid and vapor products. Ptank i atm .657 Ybz mol benzene/mol vapor product nvapor 55.8 mol/s nliquid 37.6 mol/s Hint GO Tutorial Save for Later Energy Balance Calculate the required heat input rate in kilowatts. i kW GO Tutorial Save for Later Assistance Used Attempts: 1 of 5 used Submit Answer Assistance Used Attempts: 0 of 5 used Submit Answerarrow_forwardView Policies Show Attempt History Current Attempt in Progress Saturated steam at 342.1°C is used to heat a countercurrently flowing stream of methanol vapor from 70.0°C to 321.7°C in an adiabatic heat exchanger. The flow rate of the methanol is 5530 standard liters per minute, and the steam condenses and leaves the heat exchanger as liquid water at 95.0°C. Physical Property Tables Entering Steam Homework 8 Question 3 of 5 Check unit conversions. Calculate the required flow rate of the entering steam in m³/min. 0.0165 m³/min eTextbook and Media Hint Save for Later Heat Transferred * Check units and significant figures. Calculate the rate of heat transfer from the water to the methanol (kW). i 58.7 kW Hint Save for Later 0/1 EE Attempts: 1 of 5 used Submit Answer Attempts: 1 of 5 used Submit Answerarrow_forwardheat and mass transferarrow_forward
- Steam at atmospheric pressure (Tsat = 100oC, hfg = 2.257×106 J/kg) is in contact with a horizontal tube through which a cooling fluid is circulated. The tube has 0.0334 m outside diameter, 1 m length, and an outside-surface temperature that is maintained at 60oC. Determine the rate of heat that the cooling fluid must remove and the condensation rate. For water at average temperature, ρ L = 974 kg/m3, k = 0.668 W/m·K, ρ v = 0.516 kg/m3, ν L = 0.364×10-6m2/s. g =9.81 m/s2.arrow_forwardSurface A1 of the system shown in the figure below is a graybody with emissivity of 0.56 andsurface A2 is a blackbody.Can you determine view factors F1-2 and F2-1. And draw an analogous electrical circuit based on Ohm’s law and determine the net radiation heat transfer from surface A1 to surface A2 if T1 = 500oC and T2 = 27oC. For the graybody, α = ε. Stefan-Boltzmann constant, σ = 5.676 × 10-8 W/m2·K4.arrow_forwardAn aluminum saucepan has a handle that is fixed to its wall. The handle itself is made of low carbon steel, and will have a plastic grip attached to it that is comfortable to grasp. Before selecting a plastic, it is necessary to have information on the temperature of the carbon steel handle. The carbon steel handle can be considered as a rod 11 mm in diameter and 45 mm long. When being used over a stove burner, the ambient temperature T∞ is 30 oC, and the temperature at the base of the handle reaches T0 = 100 oC. The convective heat transfer coefficient h is 8 W/m2·K and k = 43 W/m·K for low carbon steel. Can you derive the differential equation for the temperature of handle with x as a spatial variable and determine the temperature of handle at the position of 40 mm from the base. Using the general solution attached. Also Can you determine the total heat transfer rate (q) from the handle using the above temperature profile equation and determine the total heat transfer rate (q) from…arrow_forward
- For forced convection, the important variables, their symbols, and dimensional representations are listed below. From the Buckingham method of grouping the variables, the rank of the dimensional matrix is 4. What is the number of independent dimensionless groups in this case? By utilizing the dimensional- analysis approach, find a dimensionless group. (Show just one dimensionless group you can find)arrow_forwardA parallel flow heat exchanger with surface area of 62.5 m2 is to be designed for cooling oil at 80oC with specific heat of 2.5 kJ/kg·oC and mass flow rate of 5.0 kg/s. Water at 15oC flowing at 9.94 kg/s is used as the cooling fluid (cp = 4.19 kJ/kg·oC). 1 W = 1 J/s Can you determine the heat transfer rate and outlet temperatures, assuming an overall heat transfer coefficient equal to 300 W/m2·oC. For heat transfer rate, use the effectiveness, ε, and Check the results with log-mean temperature difference approach. (Calculate the heat transfer rate and compare the value in (1))varrow_forwardA 5 cm diameter, 60 cm long aluminum cylinder initially at 50 oC is submerged in an ice-water bath at 2 oC. The convective heat transfer coefficient between the metal and the bath is 550 W/m2·K. Using the lumped parameter analysis, derive the equation below. Show procedures in detail please.And determine the central temperature of the aluminum after 1 min. For aluminum, k = 236 W/m·K, ρ =2702 kg/m3, and cp= 896 J/kg·K. (1 W = 1 J/s) Then calculate the cumulative heat transfer for the first 1 min.(the first law of theromodynamics is attached and the. needed equation to derive)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The