
(a)
Interpretation:
The full ground state electronic configuration of
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. The energy level that has lower energy is considered to be the ground state. Due to its lower energy, the ground state is taken as a stable state.
The electronic configuration is used to predict the physical, chemical, electrical and magnetic properties of the substance.
The electrons are filled up in accordance with three rules:
1. Aufbau principle which states that the electrons are filled up in the increasing order of their orbitals which follows as:
2. Hund’s rule which states that the pairing of electrons will not start until each of the orbitals is singly occupied.
3. Pauli’s exclusion principle states that no two electrons can have the same value of all the four quantum numbers.
(b)
Interpretation:
The full ground state electronic configuration of
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. The energy level that has lower energy is considered to be the ground state. Due to its lower energy, the ground state is taken as a stable state.
The electronic configuration shows the distribution of electrons of atoms in the atomic orbitals. It is used to predict the physical, chemical, electrical and magnetic properties of the substance.
The electrons are filled up in accordance with three rules:
1. Aufbau principle which states that the electrons are filled up in the increasing order of their orbitals which follows as:
2. Hund’s rule which states that the pairing of electrons will not start until each of the orbitals is singly occupied.
3. Pauli’s exclusion principle states that no two electrons can have the same value of all the four quantum numbers.
(c)
Interpretation:
The full ground state electronic configuration
Concept introduction:
The electronic configuration of an element tells about the distribution of electrons in the atomic orbitals. The energy level that has lower energy is considered to be the ground state. Due to its lower energy, the ground state is taken as a stable state.
The electronic configuration shows the distribution of electrons of atoms in the atomic orbitals. It is used to predict the physical, chemical, electrical and magnetic properties of the substance.
The electrons are filled up in accordance with three rules:
1. Aufbau principle which states that the electrons are filled up in the increasing order of their orbitals which follows as:
2. Hund’s rule which states that the pairing of electrons will not start until each of the orbitals is singly occupied.
3. Pauli’s exclusion principle states that no two electrons can have the same value of all the four quantum numbers.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Indicate the functions that salt bridges have in batteries.arrow_forwardIn the battery:Pt | H2 (g) | H+ (aq) | Fe2+ (aq) | FeIndicate the cathode and anode.arrow_forwardWrite the equations that occur when the electrode Pb (s) | PbI2 (s) | KI (ac) in a galvanic cell. a) It functions as a positive electrode b) It functions as a negative electrode c) What is the ion with respect to which this electrode is reversible?arrow_forward
- State the formula to find the electromotive force of a battery as a function of the potential of the anode and the cathode.arrow_forwardWhy are normal electrode potentials also called relative electrode potentials?arrow_forwardEasily differentiate between electrochemical potential and Galvani potential.arrow_forward
- Construct a molecular orbital diagram for carbon monoxide. Identify the relevant point group,include all of the appropriate symmetry labels and pictures, and fill in the electrons. Make sure toaccount for the difference in electronegativity between C and O. Hint: CO is substantiallyisoelectronic to N2. (PLEASE DRAW THE ENTIRE MO DIAGRAM!!!)arrow_forwardplease help with hwarrow_forwardhelp me solve this hwarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





