One g-mole of pure liquid sulfuric acid at temperature T0(°C) is mixed with r g-moles of liquid water, also at temperature T0(°C), in an adiabatic container. The final solution temperature is Ts(°C). The heat capacities of the pure acid, pure water, and the product solution [J/(g·°C)] are Cpk, Cpw, and Cps, respectively, all of which may be taken to be independent of temperature.
- Without doing any calculations, sketch the plot of Tsversus r you would expect to obtain for r varying between 0 and oo. (Hint: Think first about what you would expect Tsto be at the extreme values of r.) Use an energy balance to derive an expression for T sin terms of the initial acid and water temperatures, the heat capacities, the water/acid mole ratio (r), and the heat of mixing,
r (mol H2O) | 0.5 | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 10.0 | 25.0 | 50.0 | 100.0 |
Cp[J/(g·°C)] | 1.58 | 1.85 | 1.89 | 1.94 | 2.10 | 2.27 | 2.43 | 3.03 | 3.56 | 3.84 | 4.00 |
The heat capacities of pure sulfuric acid and pure water may be determined from the molar heat capacities in Table B.2 evaluated at 25°C. All heat capacities should be taken to be independent of temperature.
Unfortunately, the laboratory air conditioner has been out of order for three weeks (Physical Plant promises they will get to it any day now) and the temperature on the July afternoon of the experiment (which also equals the initial acid and water temperatures) is an uncomfortable 40°C. Prepare a spreadsheet to generate a table and then a plot of Ts. the final temperature in each flask, versus r. the water/acid mole ratio of the solution in the flask. (Suggestion: Make the r axis logarithmic.) Assume that mixing is adiabatic.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
Additional Science Textbook Solutions
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out With Visual Basic (8th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Introduction To Programming Using Visual Basic (11th Edition)
Database Concepts (8th Edition)
- please, provide me with right resultsarrow_forwardEx. HW. A vertical glass tube, 2cm ID & 5m long in heated uniformly over its length. The water enter at (200-204 C) & 68.9 bar calculated the pressure drop if the flowrate 0.15 Kg/s & the power applied as a heat to the fluid is 100KW using the homogeneous model. Given that enthalpy at inlet temp.=0.87MJ/Kg, enthalpy saturation temp (285C)=1.26 MJ/Kg and μl=0.972*10-4 Ns/m2, μG=2.89*10-5 Ns/m2, UG=2.515*10-2m3/Kg and the change in UG over range of pressure=-4.45*10-4m3/Kg/bar.arrow_forward4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forward
- and the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forwardA chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forward
- Please solve this question by simulation in aspen hysysarrow_forward(11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The