Spacecraft that study the Sun are often placed at the so-called L1 Lagrange point, located sunward of Earth on the Sun-Earth line. L1 is the point where Earth’s and Sun’s gravity together produce an orbital period of one year, so that a spacecraft at L1 stays fixed relative to Earth as both planet and spacecraft orbit the Sun. This placement ensures an uninterrupted view of the Sun. without being periodically eclipsed by Earth as would occur in Earth orbit. Find L1’s location relative to Earth. (Hint: This problem calls for numerical methods or solving a higher-order polynomial equation.)
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Essential University Physics (3rd Edition)
Additional Science Textbook Solutions
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
College Physics (10th Edition)
College Physics
Conceptual Physical Science (6th Edition)
Modern Physics
Lecture- Tutorials for Introductory Astronomy
- 3. The Moon has a period of 27.3 days and a mean distance of 3.90×105 km from the center of Earth. a. Use Kepler's laws to find the period of a satellite in orbit 6.70x103 km from the center of Earth. b. How far above Earth's surface is this satellite?arrow_forwardOn the evening of an autumnal equinox day Siddhant noticed that Mars was exactly along the north-south meridian in his sky at the exact moment when the sun was setting. In other words, the Sun and Mars subtended an angle of exactly 90° as measured from the Earth. If the orbital radius of Mars is 1.52 au, What will be the approximate rise time of the mars on the next autumnal equinox day?arrow_forwardScientist once hypothesized the existence of a planet called vulcan to explain Mercury's precession. Vulcan is supposed to be between mercury and the sun with a solar distance equal to 2/3;of that mercury. What would be its supposed periodarrow_forward
- The radius of the Earth's orbit is 1.50 1011 m and that of Mars is 2.28 1011 m. The star that this planet orbits is identical to our Sun. What is the orbital period of this planet?In years?arrow_forwardA planet revolves around a certain star. At one point in the planet's orbit, called periapsis, it passes much closer to the star. Which of the following statements about periapsis is true? The planet's orbital period becomes shorter after every periapsis. The planet's orbital period becomes longer after every periapsis. The planet orbits with a slower speed during periapsis. The planet orbits with a greater speed during periapsis.arrow_forwardQuestion 4: Use Kepler's 3rd law to find the orbital periods (assume circular orbits) for the inner planets given that their orbital radii are: Mercury: 5.8 x 107 km Venus: 1.08 x 108 kmarrow_forward
- The dwarf planet Praamzius is estimated to have a diameter of about 300 km and orbits the sun at a distance of 6.8×10^12m. What is its orbital period in years? Express your answer in years to three significant figures.arrow_forwardIs it possible to put a satellite in a “geostationary” orbit around Venus? You can assume that Venus is spherical, that its sidereal day is 5832 hours, its mass is 4.867×1023 kg and that the radius of its Hill sphere is 1.0042x106 km (Hill sphere of a planet is the region in which it dominates the attraction of satellites, a satellite has to be inside that sphere to remain around the planet)arrow_forwardA planet is about 7.79 x 108 km (orbital radius) from the sun. It takes 1,425 days for the planet to go around its orbit (assume circular orbit). What is the orbital velocity in km/sec of the planet along its orbital path? What is its acceleration toward the sun in km/sec2? (Force attraction of sun = ma = mv2); r = orbital radius rarrow_forward
- You are planning a dream vacation to Mars. For the orbital dynamics part of the vacation planning assume that Earth is in a circular orbit 1.00 AU from the Sun and Mars is in a circular orbit 1.52 AU from the Sun. Assume the the orbits of Earth and Mars are coplanar and that they go around the Sun the same way. The orbit you plan to use for your trip is an ellipse with the Sun at one focus (Kepler's 1st Law). The perihelion of the ellipse is at Earth's orbit at 1.00 AU and the aphelion is at Mars' orbit at 1.52 AU. Your spacecraft will go around the Sun in the same sense as Earth and Mars. The orbit you have chosen is called a Hohmann Transfer Orbit. A. What is the semi-major axis a of the spacecraft's orbit? What is the eccentricity of the spacecraft's orbit? B. What is the orbital period of the spacecraft? How long does it take to get to Mars? How long does it take to get back? C. When (at what Earth - Mars configuration) do you launch to go? In other words, where does Mars need to…arrow_forwardthe international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosynchronous satellite has an orbital period of 24 hours. The radius of Earth is 6400 km. Use Kepler's 3rd Law to compare these two and find the orbital altitude of the geosynchronous satellite.arrow_forwardAs you increase your distance away from the surface of the earth, 'G' gets smaller and smaller. True or Falsearrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning