Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 41P
To determine
The mass of the galaxy using the Sun’s orbit around the galaxy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Sun, which is 2.2 * 10^20 m from the centerof the Milky Way galaxy, revolves around that center once every2.5 * 10^8 years. Assuming each star in the Galaxy has a mass equalto the Sun’s mass of 2.0 * 10^30 kg, the stars are distributed uniformlyin a sphere about the galactic center, and the Sun is at theedge of that sphere, estimate the number of stars in the Galaxy.
Please asap
Two planets P, and P, orbit around a star S in circular orbits with speeds v, = 44.4 km/s, and v, = 59.6 km/s respectively.
(a) If the period of the first planet P, is 7.80 years, what is the mass of the star it orbits around?
kg
(b) Determine the orbital period of P,.
yr
Chapter 8 Solutions
Essential University Physics (3rd Edition)
Ch. 8.2 - Suppose the distance between two objects is cut in...Ch. 8.3 - Suppose the paths in Fig. 8.8 are the paths of...Ch. 8.4 - Prob. 8.3GICh. 8 - What do Newtons apple and the Moon have in common?Ch. 8 - Prob. 2FTDCh. 8 - When you stand on Earth, the distance between you...Ch. 8 - The force of gravity on an object is proportional...Ch. 8 - A friend who knows nothing about physics asks what...Ch. 8 - Could you put a satellite in an orbit that keeps...Ch. 8 - Why are satellites generally launched eastward and...
Ch. 8 - Given Earths mass, the Moons distance and orbital...Ch. 8 - How should a satellite be launched so that its...Ch. 8 - Does the gravitational force of the Sun do work on...Ch. 8 - Space explorers land on a planet with the same...Ch. 8 - Use data for the Moons orbit from Appendix E to...Ch. 8 - Prob. 13ECh. 8 - Prob. 14ECh. 8 - Two identical lead spheres with their centers 14...Ch. 8 - Whats the approximate value of the gravitational...Ch. 8 - A sensitive gravimeter is carried to the top of...Ch. 8 - Prob. 18ECh. 8 - Find the speed of a satellite in geostationary...Ch. 8 - Marss orbit has a diameter 1.52 times that of...Ch. 8 - Calculate the orbital period for Jupiters moon Io,...Ch. 8 - An astronaut hits a golf ball horizontally from...Ch. 8 - The Mars Reconnaissance Orbiter circles the red...Ch. 8 - Earths distance from the Sun varies from 147 Gm at...Ch. 8 - Prob. 25ECh. 8 - A rocket is launched vertically upward from Earths...Ch. 8 - What vertical launch speed is necessary to get a...Ch. 8 - Find the energy necessary to put 1 kg, initially...Ch. 8 - Whats the total mechanical energy associated with...Ch. 8 - Prob. 30ECh. 8 - Determine escape speeds from (a) Jupiters moon...Ch. 8 - Prob. 32ECh. 8 - The gravitational acceleration at a planets...Ch. 8 - One of the longest-standing athletic records is...Ch. 8 - Prob. 35PCh. 8 - If youre standing on the ground 15 m directly...Ch. 8 - Given the Moons orbital radius of 384,400 km and...Ch. 8 - Equation 7.9 relates force to the derivative of...Ch. 8 - During the Apollo Moon landings, one astronaut...Ch. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Youre preparing an exhibit for the Golf Hall of...Ch. 8 - Prob. 43PCh. 8 - Satellites A and B are in circular orbits, with A...Ch. 8 - The asteroid that exploded over Chelyabinsk,...Ch. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Neglecting air resistance, to what height would...Ch. 8 - Show that an object released from rest very far...Ch. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Two meteoroids are 160,000 km from Earths center...Ch. 8 - Two rockets are launched from Earths surface, one...Ch. 8 - Prob. 58PCh. 8 - A missiles trajectory takes it to a maximum...Ch. 8 - Prob. 60PCh. 8 - Mercurys orbital speed varies from 38.8 km/s at...Ch. 8 - Prob. 62PCh. 8 - Two satellites are in geostationary orbit but in...Ch. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - We derived Equation 8.4 on the assumption that the...Ch. 8 - Prob. 67PCh. 8 - As a member of the 2040 Olympic committee, youre...Ch. 8 - The Olympic Committee is keeping you busy! Youre...Ch. 8 - Tidal forces are proportional to the variation in...Ch. 8 - Spacecraft that study the Sun are often placed at...Ch. 8 - Prob. 72PPCh. 8 - Prob. 73PPCh. 8 - Prob. 74PPCh. 8 - The Global Positioning System (GPS) uses a...
Knowledge Booster
Similar questions
- Compute directly the gravitational force on a unit mass at a point exterior to a homogeneous sphere of matter.arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardShow that the velocity of a star orbiting its galaxy in a circular oibit is inversely proportional to the square root of its orbital radius, assuming the mass of the stars inside its orbit acts like a single mass at the center of the galaxy. You may use an equation from a previous chapter to support your conclusion, but you must justify its use and define all terms used.arrow_forward
- A massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forwardRepeat the preceding problem with the ship heading directly away from the Earth.arrow_forwardA spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 000 kg. Ii has strayed too close to a black hole having a mass 100 times that of the Sun (Fig. P11.11). The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. (a) Determine the total force on the spacecraft. (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in accelerations grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.)arrow_forward
- Assuming a circular orbit for the Sun about the center of the Milky Way galaxy, calculate its orbital Speed using the following information: The mass of the galaxy is equivalent to a single mass times that at the Sun (or located 30,000 ly away.arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forward(a) What is the approximate force of gravity on a 70kg person due to the Andromeda galaxy, assuming its total mass is 1013 than of our Sun and acts like a single mass 2 Mly away? (b) What is the ratio of this force to the person's weight? Note that Andromeda is the closest large galaxy.arrow_forward
- Astronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forwardWhat is the Schwarzschild radius for the black hole at the center of our galaxy if it has the mass of 4 million solar masses?arrow_forwardTwo black holes (the remains of exploded stars), separated by a distance of 10.0 AU (1 AU = 1.50 1011 m), attract one another with a gravitational force of 8.90 1025 N. The combined mass of the two black holes is 4.00 1030 kg. What is the mass of each black hole?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning