Introduction to General, Organic and Biochemistry
12th Edition
ISBN: 9780357391594
Author: Frederick A. Bettelheim; William H. Brown; Mary K. Campbell
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 64P
Interpretation Introduction
Interpretation:
The compound listed in Table 8-6 that is most effective for making a buffer at pH 7.0 should be identified.
Concept Introduction:
The buffer consists of zwitter ions molecules which have both positive and negative charges. They are concentration and temperature change resistant. To understand the buffer it is not important to know its structure only the
Here, pH is negative log of hydrogen ion,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5:50 1
Search
Question 5 of 20
Submit
Determine the mass of solid NaCH;COO that
must be dissolved in an existing 500.0 mL
solution of 0.200 M CH3COOH to form a buffer
with a pH equal to 5.00. The value of Ka for
CH-COОH is 1.8 х 10-5.
1
2
Let x represent the original concentration of
CH;COO in the water. Based on the given
values, set up the ICE table in order to
determine the unknown.
CH3COOH+ H20(1) =H;O*(aq) +CH3COO-(a
Initial (M)
Change (M)
Equilibrium
(M)
5 RESET
0.200
5.00
-5.00
1.0 x 10-9
-1.0 × 10-9
1.0 x 10-5
-1.0 x 10-5
1.8 x 10-5
-1.8 x 10-5
х+ 5.00
x - 5.00
x + 1.0 × 10-9
х - 1.0 х 10-9
1.0 x 10-5
x - 1.0 × 10-5
x + 1.8 × 10-5
х - 1.8 х 10-5
Which of the following aqueous solutions are good buffer systems?
O 0.14 M hypochlorous acid + 0.18 M potassium hypochlorite
D0.29 M ammonium bromide + 0.32 M ammonia
O 0.37 M nitrous acid + 0.25 M sodium nitrite
O 0.17 M sodium cyanide + 0.28 M hydrocyanic acid
D0.30 M hydroiodic acid + 0.17 M potassium iodide
Give clear handwritten answer please!
Chapter 8 Solutions
Introduction to General, Organic and Biochemistry
Ch. 8.3 - Problem 8-1 Draw the acid and base reactions for...Ch. 8.4 - Prob. 8.2QCCh. 8.5 - Prob. 8.3QCCh. 8.5 - Problem 8-4 Which is the stronger acid? (a)...Ch. 8.6 - Problem 8-5 Write the balanced net ionic equation...Ch. 8.7 - Problem 8-6 The [OH-] of an aqueous solution is M....Ch. 8.8 - Problem 8-7 (a) The [H3O+] of an acidic solution...Ch. 8.8 - Problem 8-8 The [OH-] of a solution is M. What are...Ch. 8.9 - Problem 8-9 Calculate the concentration of an...Ch. 8.10 - Problem 8-10 What is the pH of a buffer solution...
Ch. 8.11 - Problem 8-11 What is the pH of a boric acid buffer...Ch. 8.12 - Prob. 8.12QCCh. 8 - 8-13 Define (a) an Arrhenius acid and (b) an...Ch. 8 - 8-14 Write an equation for the reaction that takes...Ch. 8 - 8-15 Write an equation for the reaction that takes...Ch. 8 - 8-16 For each of the following, tell whether the...Ch. 8 - 8-17 For each of the following, tell whether the...Ch. 8 - 8-18 Which of these acids are monoprotic, which...Ch. 8 - 8-19 Define (a) a Brønsted—Lowry acid and (b) a...Ch. 8 - 8-20 Write the formula for the conjugate base of...Ch. 8 - 8-21 Write the formula for the conjugate base of...Ch. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - 8-25 Draw the acid and base reactions for the...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - 8-28 Will carbon dioxide be evolved as a gas when...Ch. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - 8-33 Write an equation for the reaction of HCI...Ch. 8 - 8-34 When a solution of sodium hydroxide is added...Ch. 8 - 8-35 Given the following values of [H3O+),...Ch. 8 - 8-36 Given the following values of [OH-],...Ch. 8 - 8-37 What is the pH of each solution given the...Ch. 8 - 8-38 What is the pH and pOH of each solution given...Ch. 8 - 8-39 What is the pH of each solution given the...Ch. 8 - Prob. 28PCh. 8 - 8-41 What is the [OH-] and pOH of each solution?...Ch. 8 - Prob. 30PCh. 8 - 8-43 What is the molarity of a solution made by...Ch. 8 - 8-44 What is the molarity of a solution made by...Ch. 8 - 8-45 Describe how you would prepare each of the...Ch. 8 - 8-46 If 25.0 mL of an aqueous solution of H2SO4...Ch. 8 - 8-47 A sample of 27.0 mL of 0.310 M NaOH is...Ch. 8 - 8-48 A 0.300 M solution of H2SO4 was used to...Ch. 8 - 8-49 A solution of NaOH base was titrated with...Ch. 8 - 8-50 The usual concentration of HCO3- ions in...Ch. 8 - 8-51 What is the end point of a titration?Ch. 8 - Prob. 40PCh. 8 - 8-53 Write equations to show what happens when, to...Ch. 8 - 8-54 Write equations to show what happens when, to...Ch. 8 - 8-55 We commonly refer to a buffer as consisting...Ch. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - 8-58 What is the connection between buffer action...Ch. 8 - Prob. 47PCh. 8 - 8-60 How is the buffer capacity affected by the...Ch. 8 - 8-61 Can 100 of 0.1 M phosphate buffer at pH 7.2...Ch. 8 - 8-62 What is the pH of a buffer solution made by...Ch. 8 - 8-63 The pH of a solution made by dissolving 1.0...Ch. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - 8-66 Calculate the pH of an aqueous solution...Ch. 8 - Prob. 57PCh. 8 - 8-68 If you have 100 mL of a 0.1 M buffer made of...Ch. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - 8-71 Explain why you do not need to know the...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - 8-76 (Chemical Connections 8B) Name the most...Ch. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - 8-79 (Chemical Connections 8D) Another form of the...Ch. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - 8-82 Assume that you have a dilute solution of HCI...Ch. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - 8-86 Following are three organic acids and the...Ch. 8 - 8-87 The pKavalue of barbituric acid is 5.0. If...Ch. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI...Ch. 8 - 8-94 Suppose you wish to make a buffer whose pH is...Ch. 8 - Prob. 85PCh. 8 - 8-96 Suppose you want to make a CH3COOH/CH3COO-...Ch. 8 - Prob. 87PCh. 8 - 8-98 When a solution prepared by dissolving 4.00 g...Ch. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - 8-101 Suppose you have an aqueous solution...Ch. 8 - Prob. 92PCh. 8 - 8-103 Suppose you have a phosphate buffer...Ch. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - 8-107 Following are pH ranges for several human...Ch. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - 8-108 What is the ratio of HPO42-/H2PO4- in a...Ch. 8 - Prob. 101PCh. 8 - 8-110 A concentrated hydrochloric acid solution...Ch. 8 - 8-111 The volume of an adult's stomach ranges from...Ch. 8 - 8-112 Consider an initial 0.040 M hypobromous acid...Ch. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - 8-115 When a solution prepared by dissolving 0.125...Ch. 8 - 8-116 A railroad tank car derails and spills 26...Ch. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 8-93 Do a 1.0 M CH3COOH solution and a 1.0 M HCI solution require the same amount of 1.0 M NaOH to hit a titration end point? Explain.arrow_forward8-60 How is the buffer capacity affected by the ratio of the conjugate base to the conjugate acid?arrow_forward8-55 We commonly refer to a buffer as consisting of approximately equal molar amounts of a weak acid and its conjugate base—for example, CH3COOH and CH3COO-. Is it also possible to have a buffer consisting of approximately equal molar amounts of a weak base and its conjugate acid? Explain.arrow_forward
- 8-71 Explain why you do not need to know the chemical formula of a buffer compound to use it.arrow_forward8-94 Suppose you wish to make a buffer whose pH is 8.21. You have available 1 L of 0.100 M NaH2PO4 and solid Na2HPO4. How many grams of the solid Na2HPO4 must be added to the stock solution to accomplish this task? (Assume that the volume remains 1 L.)arrow_forward8-101 Suppose you have an aqueous solution prepared by dissolving 0.050 mol of NaH2PO4 in 1 L of water. This solution is not a buffer, but suppose you want to make it into one. How many moles of solid Na2HPO4 must you add to this aqueous solution to make it into: (a) A buffer of pH 7.21 (b) A buffer of pH 6.21 (c) A buffer of pH 8.21arrow_forward
- 8-115 When a solution prepared by dissolving 0.125 g of an unknown diprotic acid in 25.0 mL of water is titrated with 0.200 M NaOH, 30.0 ml, of the NaOH solution is needed to neutralize the acid. Determine the molarity of the acid solution. What is the molar mass of the unknown diprotic acid?arrow_forward8-54 Write equations to show what happens when, to a buffer solution containing equimolar amounts of HPO42- and H2PO4-, we add (a) H3O+ (b) OH-arrow_forward8-53 Write equations to show what happens when, to a buffer solution containing equimolar amounts of CH3COOH and CH3COO-, we add: (a) H3O (b) OH-arrow_forward
- 8-112 Consider an initial 0.040 M hypobromous acid (HOBr) solution at a certain temperature. At equilibrium after partial dissociation, its pH is found to be 5.05. What is the acid ionization constant, Ka, for hypobromous acid at this temperature?arrow_forwardA good buffer generally contains relatively equal concentrations of weak acid and conjugate base. If you wanted to buffer a solution at pH = 4.00 or pH = 10.00, how would you decide which weak acidconjugate base or weak baseconjugate acid pair to use? The second characteristic of a good buffer is good buffering capacity. What is the capacity of a buffer? How do the following buffers differ in capacity? How do they differ in pH? 0.01 M acetic acid/0.01 M sodium acetate 0.1 M acetic acid/0.1 M sodium acetate 1.0 M acetic acid/1.0 M sodium acetatearrow_forwardWhat is the pH of a buffer that is 0.175 M in a weak acid and 0.200 M in the acids conjugate base? The acids ionization constant is 5.7 104.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License