Concept explainers
8-41 What is the [OH-] and pOH of each solution?
(a) 0.10 M KOH,
(b) 0.10 M Na2CO3,
(c) 0.10 M Na3PO4,
(d) 0.10 M NaHCO3,
(a)
Interpretation:
The hydroxide ion concentration and pOH of KOH to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 29P
pOH of solution is 1.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOH can be determined as:
Thus, pOH of solution is 1.
(b)
Interpretation:
The hydroxide ion concentration and pOH of Na2 CO3 to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 29P
pOH of solution is 2.4.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOHcan be determined as:
Thus, pOH of solution is 2.4.
(c)
Interpretation:
The hydroxide ion concentration and pOH of Na3 PO4 to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 29P
pOH of solution is 2.0.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOHcan be determined as:
Thus, pOH of solution is 2.0.
(d)
Interpretation:
The hydroxide ion concentration and pOH of NaHCO3 to be identified.
Concept Introduction:
Dissociation of water results in production of hydronium and hydroxide ion. The dissociation constant of water is denoted by Kw and can be represented as follows:
[H3 O+ ] [OH- ] = kw.
Where, kw is dissociation constant of water = 10-14.
[H3 O+ ] is the concentration of hydronium ion.
[OH- ] is the concentration of hydroxide ion.
Answer to Problem 29P
pOH of solution is 5.6.
Explanation of Solution
Hydronium ion concentration can be determined as:
Now, hydroxide ion concentration can be determined as:
pOH can be determined as:
Thus, pOH of solution is 5.6.
Want to see more full solutions like this?
Chapter 8 Solutions
Introduction to General, Organic and Biochemistry
- Please provide with answer, steps and explanation of ideas to solve.arrow_forwardUsing what we have learned in CHEM 2310 and up through class on 1/31, propose a series of reaction steps to achieve the transformation below. Be sure to show all reagents and intermediates for full credit. You do not need to draw mechanism arrows, but you do need to include charges where appropriate. If you do not put your group name, you will get half credit at most. ? Brarrow_forwardDraw a mechanism for the formation of 2-bromovanillin using bromonium ion as the reactive electrophile.arrow_forward
- Please provide with answer, steps and explanation of ideas to solve.arrow_forwardIndicate whether the copper(II) acetate dimer, in its dihydrated form with the formula [(CH3COO)2Cu]2·2H2O, is a metal cluster, a cage compound, or neither.arrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning